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Teacher’s Actions to Promote Students’ 
Justifications

Joana Mata-Pereira
João Pedro da Ponte

ABSTRACT
Justification is a mathematical reasoning process that relies on concepts, properties or 

mathematical ideas and, in certain situations, particular cases, being a fundamental part of the proof. 
The teacher needs to promote justification in the classroom, as it is essential to the development of 
students’ mathematical knowledge. This study aims to understand how a set of design principles 
regarding tasks and teacher’s actions contributes to enhance students’ justifications in whole-class 
mathematical discussions and to understand what kinds of justifications emerge in those discussions. 
The intervention, part of a design-based research, occurs in a grade 7 class of an experienced 
teacher, in nine classes about linear equations. The data collection includes classroom observations 
(video and audio recorded) and a logbook. Data analysis considers a set of design principles, a 
conceptual framework for teacher actions, and a conceptual framework for student justifications. 
The results show that certain sequences of teacher actions based on the design principles allow 
students to present quite complete justifications based on logical coherence and mathematical 
aspects of the situation.

Keywords: Mathematical reasoning. Justification. Teacher’s actions. Design-based 
research.

Ações do Professor para Promover Justificações dos Alunos

RESUMO
A justificação é um processo de raciocínio que se baseia em conceitos, propriedades 

ou ideias matemáticas e, em algumas situações, em casos particulares, sendo um elemento 
fundamental da demonstração. O professor deve promover a justificação na sala de aula pois 
esta é essencial para o desenvolvimento do conhecimento matemático dos alunos. Este estudo 
tem por objetivo compreender de que modo um conjunto de princípios de design referentes a 
tarefas e ações do professor contribui para promover as justificações dos alunos em momentos 
de discussão coletiva e compreender que tipos de justificação surgem dessas discussões. A 
intervenção, parte de uma investigação baseada em design, ocorre numa turma de 7.º ano de 
uma professora experiente, em nove aulas sobre equações lineares. A recolha de dados decorre 
de observações de sala de aula (vídeo e áudio gravados) e de um diário de bordo. A análise de 
dados considera um conjunto de princípios de design, um quadro conceptual referente às ações 
do professor e um quadro conceptual referente às justificações dos alunos. Os resultados mostram 
que determinadas sequências de ações do professor que se baseiam nos princípios de design 
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permitem aos alunos apresentar justificações bastante completas baseadas na coerência lógica e 
em aspetos matemáticos da situação.

Palavras-chave: Raciocínio matemático. Justificação. Ações do professor. Investigação 
baseada em design.

Mathematical reasoning and mathematical proof are fundamental aspects of 
mathematics. Justification is structural to proof and proving and, hence, is essential to the 
development of students’ mathematical knowledge. Among other mathematical reasoning 
processes, justifying allows students to envision mathematics as a logical, inter-related and 
coherent subject. For instance, justifying procedures can help students overcome using 
them with none or little understanding. With Brousseau and Gibel (2005), we consider 
mathematical reasoning as making justified inferences, that is, using known mathematical 
information to obtain new information. This may be done inductively, deductively or 
abductively (Lannin, Ellis, & Elliot, 2011; Pólya, 1954; Rivera & Becker, 2009). Justifying 
is, thus, part of the mathematical reasoning that also involves processes as formulating 
questions and solving strategies, and formulating and testing generalizations and other 
conjectures (Lannin et al., 2011).

To promote students’ mathematical reasoning in the classroom demands the 
establishment of challenging learning environments that go beyond proposing exercises to 
solve with well-known procedures. Thus, understanding how teachers can organize those 
learning environments is essential to promote students’ mathematical reasoning. Aiming 
to understand how teachers can help students to engage in mathematical reasoning, we 
carried a design-based research (Cobb, Jackson, & Dunlap, 2016). This research addresses 
mathematical whole-class discussions, unleashed by exploratory tasks, as privileged 
moments to promote students’ mathematical reasoning. Focusing on justification, this 
article aims to understand how a set of design principles regarding tasks and teacher’s 
actions promote students’ justifications in whole-class mathematical discussions and to 
understand what kinds of justifications emerge in those discussions.

STUDENTS’ JUSTIFICATIONS
In the classroom, justifying is a process that rarely emerges spontaneously. 

Frequently, students accept as valid conjectures and generalizations, without feeling any 
need to test or justify them (Harel & Sowder, 2007). In addition, in several scenarios, 
students focus mainly on what is familiar or on ideas that they recall, focusing little 
or no attention in the mathematical properties or concepts involved (Lithner, 2008). 
However, justification is a mathematical process fundamental for students’ mathematical 
learning. Justification leads students to make connections among mathematical concepts, 
representations and procedures, to present arguments to support claims and conjectures, 
to solve problems, and to develop new mathematical ideas (Brodie, 2010). In order to 
justify mathematically, students produce statements to convince themselves and others 
that a claim is true or false (Harel & Rabin, 2010), but the assumptions of such statements 
need to be of mathematical nature. Justification is a means to sustain claims based on 



Acta Scientiae, v.20, n.3, maio/jun. 2018 489

mathematical properties, procedures and ideas (Lannin et al., 2011). As Lannin et al. (2011) 
indicate, in some situations, justifications based on particular cases can be an important 
stage when students do not have the tools to justify in a deductive way. As involving 
students in formal justifications too early in their schooling might not be suitable to their 
developmental level (Conner, Singletary, Smith, Wagner, & Francisco, 2014), teachers 
can consider students’ empirical justifications as acceptable according to their knowledge. 
Moreover, justifications based on particular cases that aim to represent a broader class of 
mathematical objects (Sowder & Harel, 1998), may be regarded as proper justifications 
according to the knowledge of the class. However, teachers should discuss with students 
the mathematical validity of such justifications, as students’ empirical explorations are not 
equivalent or a substitute for mathematical proofs (Stylianides & Stylianides, 2009).

Despite the goal of having students’ justifying based on mathematical assumptions, 
not all justifications that emerge in the classroom are of a purely mathematical nature. In 
fact, justifications can occur at different levels of formality and complexity. In addition, 
a student’s justification, at any level of formality or complexity, may be correct, partially 
correct or incorrect. It is essential that students understand what validates a justification 
and that they reject justifications based on authority, perception or common sense (Lannin 
et al., 2011).

By being a broad concept, justification comprises classifications of various kinds and 
different grain sizes. A lens to provide an understanding of students’ justifications regards 
its formality and complexity levels (Figure 1). Brousseau and Gibel (2005) propose three 
different levels regarding the formality of a justification: Level A – a justification that is 
not formally presented, but that can be associated with student’s actions as a model of 
his/her action; Level B – a formal justification, however incomplete or with inferences 
based only implicitly in elements of the situation or in what is considered as shared 
knowledge; Level C – a formal justification based in a sequence of related inferences, 
with explicit reference to the situation or what is considered as shared knowledge. The 
concept of formal justification referred to in these three levels concerns what is considered 
to be formal in a concrete situation, namely according to students’ grade level and their 
knowledge which is not necessarily the usual mathematical idea of formal justification 
regarding mathematical proof (Stylianides, 2007). As students advance in their schooling, 
formal justifications should progressively be more formal from a mathematical standpoint, 
often becoming equivalent to proof or significant parts of proofs.
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Figure 1. Justification levels of formality and complexity

The work of Balacheff (1988), Sowder and Harel (1998), Lannin (2005) and 
Carraher, Martinez and Schliemann (2008) on the classification of justifications may be 
summarized by considering four different increasing levels of complexity: Level 0 – no 
justification, if students’ answers do not include a justification; Level 1 – externally based 
justification, if students’ justifications rely on someone else or in reference materials; Level 
2 – empirical evidence, if a justification is based on particular examples; Level 3 – deductive 
justification, if a justification has a deductive nature. Within Level 3 justifications, it is 
possible to distinguish among Level 3A – logical coherence, if a justification is based on 
logical principles; Level 3B – generic example, if a justification is deductive, but stated 
regarding a particular example; and Level 3C– procedure or property justification, if a 
justification is based on deductive arguments that are independent of particular cases or 
examples. Levels 3A, 3B and 3C are varieties of deductive justifications, all the same 
level of complexity.

Level 1 justifications, based on external sources, can be based on authority or 
rituals or can be symbolic (Sowder & Harel, 1998). In a justification based on authority, 
a student relies on a textbook, in a teacher statement or even in a more knowledgeable 
student. A justification based on rituals occurs when students regard only the structure 
of the argument and not its content. An example is a justification based on a well-known 
procedure, such as the division algorithm. A justification based on symbolic processes is 
the one that might lead students to consider mathematical symbols as independent from 
any meaning or relation with a specific situation. In this justification, students can write, 
for instance, 4x + 2 = 6  as equivalent to 4x = 6 – 2 = 4 : 4 = 1. 

Regarding justifications based on empirical evidence (Level 2), it is possible to 
consider perceptual justifications, justifications based on examples (Sowder & Harel, 1998) 
and justifications based on crucial examples (Balacheff, 1988). Perceptual justifications are 
based on a perception of the situation, often based on diagrams or drawings. Justifications 
based on examples rely on particular cases of a situation. Balacheff (1988) designates these 
justifications as naïve empiricism and considers them as an obstacle to generalization. With 
these justifications, students often validate a mathematical generalization on the basis of 
a single naïve experiment (Stylianides & Stylianides, 2009) or state a generalization by 
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justifying that it works for all the cases they tested (Knuth, Chopin, & Bieda, 2009). In 
justifications based on crucial examples, examples are selected attending to the hypothesis 
that is settled, the strategy of choosing examples aims to obtain a clearly distinct result 
that leads to exclude all the hypothesis but one (Balacheff, 1988). In these justifications, 
a crucial experiment may validate a generalization (Stylianides & Stylianides, 2009) that 
is settled by the characteristics or the known facts of the situation. 

Deductive justifications (Level 3) are either non-empirical or consider an example 
not as a particular case, but as a representative of a class of objects. Justifications of this 
level of complexity are often part of a proof and proving and can be subdivided into three 
distinct levels mentioned above as levels 3A, 3B and 3C. Presenting justifications at level 
3 can be a signal of recognizing empirical arguments as insecure methods for validating 
a mathematical statement (Stylianides & Stylianides, 2009).

Justifications based on logical coherence (Level 3A), also denominated analytical 
justifications of axiomatic nature (Sowder & Harel, 1998), consider mathematics 
as a body of knowledge that may be organized in a way that new results are logical 
consequences of previous results. These justifications are based on logical principles 
rather than mathematical computations (Schliemann et al., 2003). Generic example 
justifications (Level 3B), also referred as analytical justifications of transformational 
nature (Sowder & Harel, 1998), focus on general aspects of a particular situation and 
may involve other reasoning processes as a generalization. Procedure or property 
justifications (Level 3C), aim to make explicit why a statement is valid, either by 
operations or transformations of an object that is considered as a representative of a 
class of objects (Balacheff, 1988), or by relying on mathematical properties, definitions, 
assumptions and theorems (Bergqvist, 2005).

TASKS AND TEACHER’S ACTIONS THAT ENHANCE 
JUSTIFICATION
Students learn mathematical reasoning by reasoning and by analyzing their and 

others’ mathematical reasoning (Ponte & Sousa, 2010). Therefore, it is necessary to 
promote situations that require students to justify their answers. When the students are 
explicitly engaged in presenting justifications, they develop a broader understanding of 
the mathematical aspects of the situations (Kosko, Rougee, & Herbst, 2014). Moreover, 
probing the students for justification stimulates them to re-examine their solving processes 
and to offer more adequate justifications (Martino & Maher, 1999). 

A central aspect to enhance students’ justifications is to propose suitable 
mathematical tasks. Therefore, it is important to understand the nature of tasks, how 
the students get involved in those tasks and the interactions that may emerge in the 
classroom (Brodie, 2010). Different research studies (e.g., Francisco & Maher, 2011) 
highlight problems and exploratory tasks as particularly indicated to enhance students’ 
mathematical reasoning. However, it is not mandatory or desirable that all tasks include 
highly challenging questions (Brodie, 2010). Too many challenging questions might be 
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unsuitable due to time limitations and lead students to lose their interest. The structure 
and level of challenge of a task must consider the students who will solve it. However, by 
themselves, tasks are not enough to develop students’ mathematical reasoning. Teacher’s 
actions are equally central to engage students in situations that enhance their mathematical 
reasoning processes, such as justification.

An important moment to support the development of students’ justifications are 
whole-class discussions in which the teacher prompts students to share their thoughts. 
In these discussions, the teacher questions the students to describe or explain their 
mathematical reasoning, leading them to understand the mathematics involved (Kosko, 
Rougee, & Herbst, 2014). A model to analyze teacher’s actions in whole-class discussions 
is proposed by Ponte, Mata-Pereira, and Quaresma (2013) (Figure 2). This model considers 
actions related to mathematical processes such as justifications, namely, inviting actions, 
informing/suggesting actions, supporting/guiding actions and challenging actions as well 
as actions related to classroom management. 

Inviting actions initiate a whole class discussion or a segment of discussion, with 
the teacher prompting the students to participate and share their solving processes. 
During the discussion, the teacher calls upon the other three kinds of actions that are 
central to support students’ learning. With informing/suggesting actions, the teacher 
makes information available to the students or validates their statements, while with 
supporting/guiding actions the teacher leads the students to explain their thinking or to 
move forward in their thinking. With challenging actions, the students are encouraged 
to go beyond the knowledge previously presented. In these three kinds of actions central 
in whole-class discussions, Ponte et al. (2013) also consider different mathematical 
processes that are involved, not necessarily disjoint: (i) representing, that includes 
providing, using or changing a representation, revoicing, and making procedures, (ii) 
interpreting, that includes giving meaning to the wording of a question or of an idea and 
making connections, (iii) reasoning, that includes raising questions about a statement 
or a justification, generalize a procedure, a concept or a property, justify and present 
arguments, and (iv) evaluating, a method or solving process and comparing different 
methods. This model relates teacher’s actions while conducting whole-class discussions 
with the mathematical processes involved. Despite being part of the reasoning, justifying 
is often associated with all the other mathematical processes considered in this model.

Figure 2. Teacher’s actions in the whole-class discussion (adapted from Ponte et al., 2013)
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Regarding teacher’s specific actions that enhance justification, Bell (2011) suggests 
that the teacher should help the students to give meaning to justifications, ask for alternative 
justifications, emphasize what validates a justification and lead the students to explain 
“why”. In addition, it is relevant that the teacher encourages the students to share ideas 
and reasoning, and look forward to considering students’ invalid or partial contributions 
and broaden valid contributions (Brodie, 2010). Harel and Rabin (2010) highlight also 
actions that aim to enhance justifications that are not supported by authority leading 
students to discuss and solve disagreements, namely, evaluating students’ mathematical 
reasoning or asking them to evaluate their colleagues’ reasoning, and presenting deductive 
justifications to students.

RESEARCH METHODOLOGY

Research design and design principles
The research reported in this article is part of a broader design-based research 

(Cobb et al., 2016) that aims to develop a local theory about how to enhance students’ 
mathematical reasoning in the classroom. In this research, a set of design principles, i.e., 
heuristics that structure an intervention, are defined with a particular focus on tasks and 
teachers’ actions to enhance students’ mathematical reasoning. Such design principles 
were refined considering the continued literature review and the previous cycles of 
intervention. Defining design principles, besides structuring the intervention, brings 
together the often-contrasting understandings of what is considered by teachers and by 
researchers as being students’ mathematical reasoning and the ways to enhance it (Kosko, 
Rougee, & Herbst, 2014).

This article concerns the third cycle of intervention on linear equations, after a first 
cycle with lessons about sequences and a second cycle addressing linear equations. We 
focus on the design principles that directly relate to students’ justifications. Regarding 
task design, a principle states that tasks should include questions that ask for justifications 
of answers or of solving processes. Regarding teacher’s actions, the design principles 
state that the teacher should propose situations that lead students to (a) justify and present 
alternative justifications; (b) identify valid and invalid justifications, indicating why; and 
(c) share ideas, namely considering and valuing invalid or partially valid contributions, 
deconstructing, complementing or clarifying them.

Intervention and participants
The third cycle of intervention included nine lessons in a grade 7 class with 27 

students. A detailed plan of each lesson was prepared attending to the design principles, 
namely with tasks designed to enhance students’ mathematical reasoning and considering 
possible teacher actions. Each lesson plan was proposed by the first author and discussed in 
detail with the teacher, who made all the changes and adjustments she deemed necessary, 
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taking into account the characteristics of the class and the available means. We invited the 
participant teacher given her experience and her availability to consider changes in her 
practice. All participants in the study (teacher and students) are volunteers, were informed 
about the characteristics of the research, agreed to participate and their anonymity is 
assured by the use of fictitious names.

Data collection and analysis
We present illustrative episodes of justifications of different kinds that emerge in 

whole-class discussions. The lessons of such episodes were directly observed, video and 
audio recorded, and led to written field notes. Data analysis focuses on the justification-
related design principles about tasks and teacher’s actions in whole-class discussions 
based on the presented model (Figure 2) and also on students’ justifications regarding 
levels of formality and complexity (Figure 1). In the next section, we present several 
situations by describing the tasks that prompted the whole-class discussions and the 
context in which such tasks were proposed to students, and then illustrate and analyze 
whole-class discussion episodes.

USING MATHEMATICAL PROPERTIES TO JUSTIFY

Task and context
The task that prompt the whole-class discussion reported in this segment aimed to 

introduce the process of solving equations based on the addition principle of equality. This 
task was proposed for the class to be solved collectively and its first question required 
to convert into symbolic language an equation represented in a twin-pan balance with 
sugar packages and weights (Figure 3). To this particular question, the lesson plan did 
not foresee a particular justification but indicated that the whole-class discussion should 
consider the design principles formulated in the intervention design. 

Figure 3. The first question of twin-pan balance task.

This task was proposed in the second lesson of the intervention. The first lesson 
addressed the concepts of equation, members and terms of an equation, and solution 
of an equation. It also considered the process to verify if a certain value is or is not the 
solution of an equation.
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Justification based on mathematical properties
The teacher begins the whole-class discussion by briefly presenting the task and the 

aim of the stated question. After this presentation, the students begin to answer and the 
second student that participates in the discussion presents the sought answer:

Gustavo: 2 a plus 2 equals... 6 plus a plus 2.

The teacher registers the equation  in the whiteboard and 
encourages the students to present alternative answers (principle (c)):

Daniel: I wrote 6 plus 2 plus a.

Teacher: 6 plus 2 plus a.

Gustavo: Or 8 plus a.

Teacher: Or 8 plus a. Isn’t it? It could be. Would someone translate differently?

Several students: No.

Gustavo: No, only changing the order.

As the students share these ideas, the teacher focuses on ordering terms, challenging 
the students to justify the possibility of changing the order of terms (principle (a)):

Teacher: Right, but does it make any difference?

Several students: No.

Teacher: Why is it irrelevant to change the order?

Gustavo: Because a is always the only [unknown] value...

The justification provided by Gustavo to the teacher’s challenge is invalid, as it is 
based on characteristics of that particular situation (level 2 justification). In addition, this 
justification is not formally presented (type A justification) as the student does not use the 
proper terms to refer to the unknown value. Still, the teacher values Gustavo’s participation 
(principle (c)), implicitly informs the students about the validity of the justification 
(principle (b)) and challenges the students to enrich the justification (principle (a)):

Teacher: More than that.

Leonardo: Because it is an addition and it is a property of addition.

Addressing the teacher’s challenge, Leonardo justifies the possibility of changing 
the order with a statement regarding the properties of addition (level 3C justification). 
This justification is presented in a rather formal way, despite being incomplete (type B 
justification). However, it can be improved; the teacher guides the students aiming to 
complete the justification (principle (c)):

Teacher: That is...? What is its name?

Several students: Commutative property.
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Teacher: Commutative. Commutative property, so we can change the order of the 
terms, it will be the same. That’s it, it’s true.

In view of students’ answer, the justification is recognized as valid, being based on 
mathematical properties independent of the particular situation under discussion (level 
3C justification) and properly stated (type C justification). As such, the teacher decided 
to finish this whole class discussion moment by informing the students of the obtained 
conclusion (principle (c)) and validating it (principle (b)).

In this episode, a challenging action enhances an invalid and not formally presented 
justification. Based on the teacher’s informing and challenging actions, the students 
enrich it by providing a valid but incomplete justification. The teacher’s guiding actions 
allow the students to complete the justification and to present it formally, by referring 
to mathematical properties. As such, a path of challenging, informing, challenging and 
guiding actions allows students to justify properly. Also, this process of completing and 
formalizing a justification arises when the teacher’s actions focus on enhancing such 
justification and on valuing invalid and incomplete justifications.

JUSTIFICATIONS THAT DO NOT JUSTIFY

Task and context
By the end of the second lesson, the teacher recommended the students as homework 

to solve several equations using the addition principle of equality. The teacher expected 
the students to justify the solving process based on the addition principle of equality. 
At the beginning of the third lesson, there was a whole class discussion moment about 
solving some of the equations. The following episode concerns the solving process of 
the equation presented in Figure 4. 

Figure 4. Solving process of Daniel.

No justification and justification based on authority
Daniel solved the equation on the whiteboard, and afterwards, the teacher invites 

the students to share questions or suggestions. Tomás intervenes presenting an alternative 
solving process:
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Tomás: What I have done... Instead of writing three thirds minus two thirds, I wrote 
two thirds minus three thirds.

Following this contribution, the teacher challenges the students to validate this 
solving process by asking them to identify which processes are wrong, Daniel’s or Tomás’ 
(principle (c)):

Teacher: And which one is right? Where’s the error? Here [on the whiteboard] or 
there [in Tomás’ solving process]?

Tomás: Here [on my solving process].

Teacher: Why?

Tomás: Because I swapped it.

Tomás himself answers the teacher’s challenge, and the teacher moves forward 
with another challenging action, asking for a justification (principle (a)). However, Tomás 
does not present a justification (level 0 justification), stating solely the procedure that he 
used to solve the equation. As such, the teacher guides the students in order to achieve 
the sought justification (principles (a) and (c)):

Teacher: But why... Why is it wrong to exchange?..

Ricardo: You [teacher] said that over there [on the whiteboard] it was right.

Tomás is once again unable to justify, and Ricardo justifies based on authority 
(level 1 justification, type A justification), albeit the teacher had not explicitly stated that 
Daniel’s solving process on the whiteboard was correct. Attending to students’ difficulties 
to justify, the teacher provides information regarding the use of the inverse operation that 
allows the students to move forward:

Teacher: What exchanges... To the inverse operation?

Daniel: It was just two thirds or x...

Teacher: The question is, how do I know if a term is going to change its operation 
or not?

Leonardo: If we change members.

Adding to the statement of the teacher, Leonardo’s answer completes the sought 
justification. This justification, based on addition principle of equality, and thus, on 
mathematical ideas, is based on arguments independent of the particular case under 
discussion (level 3C justification), despite being a somewhat informal statement (type B 
justification). However, this justification is complemented by the teacher with information 
regarding its application in this particular case (level 3B justification) and subsequent 
information to reinforce and formally present the justification that had been completed 
by Leonardo (level 3C justification, type C justification):

Teacher: If we change members, the operation changes to the inverse operation 
... The ones that don’t change members, stay exactly as they were. Let’s check ... So, 1 
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has to continue 1... What changed member? The two thirds, it was adding and changed 
to subtracting, because it changed member. Therefore, the terms that stay in the same 
member where they were, those stay the same, don’t change a thing... The terms that 
change member are the ones that have to change to the inverse operation.

In this segment of the discussion, the first challenging action from the teacher leads 
to no justification and a subsequent guiding action leads to an invalid justification, based 
on authority. Due to the students’ difficulties in achieving the sought justification, the 
teacher’s actions rely on informing students of relevant ideas to the justification. Such 
informing action provides the students with the tools to justify based on mathematical 
ideas, albeit without the expected formality. As the students have difficulties in achieving 
the justification, the teacher’s actions also consider informing actions to clarify the 
justification. Due to students’ difficulties, in this segment, the sequence of actions has an 
emphasis on guiding and informing, with the overall path of actions including challenging, 
guiding, and two sets of informing actions. To formally present the justification and 
clarify it, the teacher began by switching between justification levels, and formalize the 
justification by revoicing students’ justification.

USING PREVIOUS KNOWLEDGE TO JUSTIFY

Task and context
Both episodes presented in this section focus on the part of a task that was proposed 

in the eighth lesson of the intervention. This segment of the task (Figure 5) aims to lead 
students to establish a procedure to figure out the intersection point of two functions. This 
class had previously studied linear functions, considering both algebraic and geometric 
representations 

Francisca received a plant as a gift, and she kept a record of its growth. Santiago thought it was a really 
nice idea and, in the very same day, bought a plant and also kept a record of its growth. The functions that 
follow represent the height of both plants in their first days with the students:

 Francisca’s plant: f(x) = 0.4x  Santiago’s plant: s(x) = 0.2x + 2.2

1. Graphically represent functions f and s. 

2. Based on the analysis of the previous graphic representations, identify in which day do the plants have 
the same height.

3. Consider the comment: “Graphs are not necessary for us to know in which day the plants have the same 
height. Knowing the functions that represent the growth of each plant is enough to verify when they are 
equal”. What would be another way to figure the day in which the plants have the same height? Justify 
your answer.

Figure 5. Proposed task regarding functions and equations.

In the first two questions, the students are expected to use GeoGebra app, as the 
school is equipped with iPads and they have used it already in the past. Regarding design 
principles about the task, question 3 explicitly asks for a justification.
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Justification based on knowledge about functions
At the beginning of the lesson, the teacher asks the students to read the questions 

and clarifies the aims of the task and the tools to use. Afterwards, the students work 
autonomously on the task, in pairs, for a couple of minutes. After inserting the algebraic 
expression in GeoGebra, some students state that the plants have the same height in 
the eleventh day. The teacher begins the discussion by asking students to justify such 
statement:

Teacher: How did you realize that it was on the eleventh day? Isa.

Isa: Because, if we look closely, both lines intersect on eleven. 

The teacher’s challenge to justify (principle (a)) leads Isa to justify her answer 
to question 2 on the basis of her prior knowledge about functions. This justification is 
incomplete with regard to the statement “on eleven”, however, it refers to elements of the 
situation, namely the graphic representation of both functions and the point of intersection. 
Thus, Isa presents a generic justification given the available data (level 3B justification), 
despite lacking the proper formality (type B justification).

In order to complete Isa’s answer (principle (c)), the teacher guides students, 
revoicing Isa’s answer and leading to a more precise justification:

Teacher: On eleven...

Isa: On point eleven.

Teacher: On point eleven?

Gabriel: Abscissa.

Teacher: On the point with abscissa eleven.

By referring parts of students’ answers, the teacher is implicitly informing students 
about what is missing in the justification (principle (b)), and, based on student responses, 
she highlights what completes it (principles (b) and (c)).

After validating Isa’s response, the teacher goes further in the justification, 
challenging the students to come up with another justification (principle (a)):

Teacher: And why is it, Isa and not only, why am I going to read the intersection 
on the x-axis? Why am I going to look for the value on the x-axis?

Isa: Because x-axis the axis of objects...

Teacher: Right... And how do I know if I am looking for an object or an image?

Isa’s justification is based on mathematical concepts (type B justification); however, 
her statement is not sufficient as a justification in this particular situation since it is not 
related to the context of the problem (invalid level 3C justification), being an invalid 
justification. Once again, the teacher validates the student’s partial contribution and 
encourages the students to complete this contribution (principles (b) and (c)), guiding 
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them. Another student tries to justify but does not add information to what Isa said earlier. 
At that moment, Gabriel participates in the discussion:

Gabriel: I think it’s because the height is in ... In ... I forgot the name.

Teacher: In the axis...

Gabriel: Of the ordinate, in the axis of the ordinates and the days are in the 
abscissa.

At this point in the discussion, Gabriel adds information relevant to the justification 
by relating objects and images of these functions to the context of the situation (level 3B 
justification), supported by the presentation of a small suggestion by the teacher. Despite 
the relevant relationship that has been added, the justification remains incomplete, and 
teacher continues to guide students to justify (principle (c)):

Teacher: What do functions s and f represent?

Several students: The height.

Teacher: The height of the plant, right? In function of what?

Several students: The time.

Teacher: The time that elapses. The time that elapses in days. OK, very well, 11.

This information given by the teacher leads the students to easily identify the 
dependent and independent variables, thus completing the intended justification (level 
3B justification, type C justification).

As in previous episodes, the teacher’s first action is a challenging action to justify. 
In this episode, this first action leads to an incomplete justification that is completed based 
on guiding actions. In order to achieve a more accurate justification based on students’ 
previous knowledge, the teacher also uses informing actions and a challenging action to 
go further in justifying. This last action leads to another sequence of moving between 
guiding and suggesting actions aiming to complete and formalize the sought justification. 
As such, the path of actions considers challenging, guiding, informing, challenging, 
guiding and suggesting actions.

Justification based on knowledge about equations
After the discussion of question 2, the teacher introduces question 3. At this point 

in the discussion, a student immediately proposes a strategy to solve the question. This 
leads the students to engage immediately in a new segment of whole-class discussion:

Santiago: So, teacher, we have that thing that was G.C.D...

Santiago brings to the discussion a strategy based on a mathematical concept that 
would not be expected in this situation. Although it seems an idea with little meaning, 
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the teacher informs the class of the idea of Santiago and lets him continue his explanation 
(principle (c)):

Teacher: Greatest common divisor?

Santiago: Yes, something like that. Can’t we use it to answer to when they intersect? 
... I can’t recall it, but wasn’t there something in common? Doing each number and 
then...

By allowing Santiago to justify his statement, it is possible to understand that, 
although incorrect and not formally presented (type A justification), this justification 
is based on an idea with some logical coherence (level 3A justification). Effectively, 
both in the greatest common divisor and in the intersection of functions what is sought 
is “something in common”, as the student refers. At this point, the teacher poses more 
questions in order to deconstruct the student’s perception of G.C.D., which leads other 
students to identify Santiago’s strategy as inappropriate for the situation.

After this clarification, Clara presents her strategy:

Clara: We can use an equation (referring to 0.4x = 0.2x + 2.2), and the number that 
we get is the day they have [the same height]...

Teacher: What are you expecting as a solution of this equation?

Several students: 11.

Teacher: 11. So, confirm that.

In retaking the information obtained in the previous questions, the teacher supports 
Clara’s strategy of solving this equation and, by challenging the students to confirm the 
result, she leads them to justify (principle (a)) that 11 is the solution of the equation. The 
students solve this equation in an autonomous work, and Daniel intervenes:

Daniel: Teacher, it isn’t.

Teacher: It isn’t? So, solve the equation over there (on the whiteboard).

By inviting the student to solve the equation in the whiteboard, the teacher 
realizes that the student only forgot x in one of the steps and, in guiding his solving 
process (principle (b) and (c)), the sought justification is adequately achieved (level 3B 
justification, type C justification).

In this segment of the discussion, previous knowledge about G.C.D. is brought to 
bear, and a teacher’s informing action leads to a justification. As the mobilized knowledge 
is not accurate with the situation, the justification is invalid albeit posed in at a logical 
level. By supporting another strategy and challenging the students to confirm a statement, 
previous knowledge about solving equations is used to justify using procedures properly. 
However, this proper justification is consolidated only after teacher’s guiding actions. 
The first path in this segment considers only informing actions, while the second began 
by guiding actions and continues with challenging and further guiding actions.
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DISCUSSION
In the analyzed episodes, the task proposed triggered all situations. Two of these tasks 

gave the students the opportunity to develop procedures, one to discover the process of 
solving equations and another to discover where two functions intersect. In the moments 
of whole-class discussion presented, there were opportunities for justification that were not 
directly related to the situation presented by the task, but rather to other ideas, concepts 
and mathematical properties that emerged. This reinforces the idea that collective activity 
in mathematical discussions allows students to share, discuss and clarify their thinking 
and mathematical knowledge (Galbrait, 1995).

As referred by Kosko, Rougee, and Herbst (2014), in order to understand the kind of 
students’ justifications, it is not enough to focus on a specific question made by the teacher, 
but it is necessary to take into account his/her sequences of actions. This research shows 
that particular sequences of teacher actions based on the design principles make it likely 
that justifications will arise in whole-class discussions. In the episodes presented, when 
the principle of requesting a justification was followed, often by means of a challenging 
action, the students presented justifications. As could be expected, these justifications stand 
essentially on prior knowledge of mathematical concepts or ideas or known mathematical 
procedures and are often incomplete and sometimes incorrect. Thus, as in previous 
research (Galbrait, 1995), the use of available information about a particular concept 
or mathematical idea was not always adequate to what was defined or assumed in the 
task. When the justifications were incomplete, the teacher tended to guide the students 
to complete it, validating or invalidating their statements mostly implicitly. Depending 
on her perception of the support the students needed to mobilize their knowledge, the 
teacher provided them with more or less information. When an invalid justification arose, 
and in accordance with the formulated principles, the teacher valued the contribution of 
the students and insisted on encouraging them to present ideas. In these situations, when 
the student’s justification was incorrect, the teacher’s actions focused on abandoning 
such justification and challenging the students to present a new justification or guiding 
them to reformulate the justification so that it would become valid. As such, based on 
the design principles to enhance justifications and by means of a sequence of teacher’s 
actions, complete justifications often arose in whole-class discussions.

In the episodes presented, the students’ justifications, although sometimes incomplete 
or invalid, tended to be reasonably formal given that they were based on mathematical 
aspects of the situation. However, some of the justifications presented, either were not 
justifications at all or were based on authority. These cases emerged when students did 
not have the required mathematical tools to answer the justification challenge posed 
by the teacher, and the appropriately formal justification emerged when the teacher’s 
informing actions introduced the required ideas for justification. In the context of whole-
class discussions based on the formulated design principles, justifications of all levels of 
complexity emerged. In addition, in a whole-class discussion episode, as justifications 
emerged and teacher’s actions supported it, justifications tended to increase its level of 
complexity. As these episodes illustrate, in order to promote opportunities for the students 



Acta Scientiae, v.20, n.3, maio/jun. 2018 503

to move forward between levels of justification, it is not enough to ask them to justify 
and validate their justifications – it is also necessary to accept and appreciate partial and 
incorrect justifications.

CONCLUSION
The sequences of challenging, guiding and informing actions from the teacher, 

constitute promising support for enhancing students’ justifications and, thereby, students’ 
mathematical reasoning. In order to achieve such sequences of actions, a close match 
between the design principles formulated and what happens in the classroom is necessary. 
In this study, as in other design-based research studies (e.g., Stylianides & Stylianides, 
2009), this emerges from the systematic approach followed and the close interaction 
between researchers and teachers. However, it will be important to understand how this 
match can occur in professional development processes.

Another relevant finding of this study is that whole-class discussions oriented by the 
design principles resulted in opportunities for students to justify at different and increasing 
levels of formality and complexity. Moreover, looking at justifications led to clarify how 
they contribute to students’ understanding of mathematical knowledge (Miyazaki, Fujita, 
& Jones, 2017). Thus, regarding higher levels of complexity, to alternate between levels of 
deductive justification may promote opportunities to understand better the mathematical 
situation at stake.

By detailing task characteristics and sequences of teacher’s actions supported by 
design principles regarding justifications, this study contributes to understanding how to 
promote students’ justifications of different kinds. It will be important to know if this set 
of design principles can improve teachers’ practice to enhance students’ mathematical 
reasoning in other school grades, such as middle and high school levels. As stated 
above, another aspect to be further researched is how these design principles may inform 
professional development processes. 

ACKNOWLEDGMENTS
This work is supported by national funds through FCT – Fundação para a Ciência 

e Tecnologia by a grant to Joana Mata-Pereira (SFRH/BD/94928/2013).

REFERENCES
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In 
D. Pimm (Eds.) Mathematics, teacher and children (pp.216-235). London: Hodder & 
Stoughton. 
Bell, C. (2011). Proofs without words: A visual application of reasoning and proof. 
Mathematics Teacher, 104(9), 690-695.



Acta Scientiae, v.20, n.3, maio/jun. 2018504

Bergqvist, T. (2005). How students verify conjectures: Teachers’ expectations. Journal 
of Mathematics Teacher Education, 8(2), 171-191. 
Brodie, K. (2010). Teaching mathematical reasoning in secondary school classrooms. 
doi:10.1007/978-0-387-09742-8
Brousseau, G., & Gibel, P. (2005). Didactical handling of students’ reasoning processes 
in problem solving situations. Educational Studies in Mathematics, 59, 13–58. 
Carraher, D., Martinez, M., & Schliemann, A. (2008). Early algebra and mathematical 
generalization. ZDM, 40, 3-22.
Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In 
L. D. English & D. Kirshner (Eds.) Handbook of international research in mathematics 
education (3rd edition, pp.481–503). New York, NY: Routledge.
Conner, A., Singletary, L., Smith, R., Wagner, P., & Francisco, R. (2014). Teacher support 
for collective argumentation: A framework for examining how teachers support students’ 
engagement in mathematical activities. Educational Studies in Mathematics, 86, 401-429. 
doi:10.1007/s10649-014-9532-8
Francisco, J. M. & Maher, C. A. (2011). Teachers attending to students’ mathematical 
reasoning: lessons from an after-school research program. Journal of Mathematics Teacher 
Education, 14(1), 49–66. doi:10.1007/s10857-010-9144-x
Galbrait, P. (1995). Mathematics as reasoning. The Mathematics Teacher, 88(5), 
412–417.
Harel, G. & Rabin, J. M. (2010). Teaching practices associated with the authoritative 
proof scheme. Journal for Research in Mathematics Education, 41(1), 14-19.
Harel, G. & Sowder, L. (2007). Toward comprehensive perspectives on the learning 
and teaching of proof. In F. Lester (Ed.), Second handbook of research on Mathematics 
teaching and learning (pp.805-842). Reston, VA: NCTM.
Knuth, E., Choppin, J., & Bieda, K. (2009). Proof: Examples and beyond. Mathematics 
Teaching in the Middle School, 15(4), 206-211.
Kosko, K., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when 
asked to facilitate mathematical argumentation in the classroom? Mathematics Education 
Research Journal, 26(3), 459-476. doi:10.1007/s13394-013-0116-1
Lannin, J. (2005). Generalization and justification: The challenge of introducing algebraic 
reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 
231-258.
Lannin, J., Ellis A. B., & Elliot, R. (2011). Developing essential understanding of 
mathematics reasoning for teaching mathematics in prekindergarten-grade 8. Reston, 
VA: NCTM.
Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational 
Studies in Mathematics, 67, 255–276.
Martino, A. & Maher, C. (1999). Teacher questioning to promote justification and 
generalization in mathematics: What research practice has taught us. Journal of 
Mathematical Behavior, 18(1), 53-78.
Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure 
of deductive proof. Educational Studies in Mathematics, 94, 223-239. doi:10.1007/
s10649-016-9720-9



Acta Scientiae, v.20, n.3, maio/jun. 2018 505

Pólya, G. (1954). Mathematics and plausible reasoning: Induction and analogy in 
mathematics. Princetonm NJ: Princeton University Press.
Ponte, J. P., Mata-Pereira, J., & Quaresma, M. (2013). Ações do professor na condução 
de discussões matemáticas. Quadrante, 22(2), 55-81.
Ponte, J. P., & Sousa, H. (2010). Uma oportunidade de mudança na Matemática no ensino 
básico. In Associação de Professores de Matemática (Ed.), O professor e o programa de 
Matemática do Ensino Básico (pp.11-41). Lisboa, Portugal: APM.
Rivera, F. & Becker, J. (2009). Algebraic reasoning through patterns. Mathematics Teacher 
in the Middle School, 15(4), 213-221.
Schliemann, A., Lessa, M., Lima, A., & Siqueira, A. (2003). Young children’s 
understanding of equivalences. In A. Schliemann, D. Carraher & B. Brizuela (Eds.) 
Bringing out the algebraic character of arithmetic: From children’s ideas to classroom 
practice (pp.37-56). Mahwah, NJ: Lawrence Erlbaum.
Stylianides, A. (2007). The notion of proof in the context of elementary school 
mathematics. Educational Studies in Mathematics, 65(1), 1-20.
Stylianides, G. & Stylianides, A. (2009). Facilitating the transition from empirical 
arguments to proof. Journal for Research in Mathematics Education, 40(3), 314-352.
Sowder, L. & Harel, G. (1998). Types of students’ justifications. The Mathematics Teacher, 
91(8), 670-675.


