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Use and Abuse of Calculators: Implications 
for Mathematics Education

José M. Chamoso
María José Cáceres

ABSTRACT
Fostering mathematical understanding and sense for numbers is an objective for current 

mathematics education. This paper presents a historical vision of the use of numbers and of 
calculation processes and reflects about the current need of electronic calculators. The coexistence 
of two different mathematical systems, one based on the Greek axiomatic mathematics and another, 
the floating point system, used in electronic calculators, can lead to some confusions that which 
affects the teaching of mathematics, especially in the numerical sense development. The paper 
also presents common mistakes caused by the missing verification of the results from calculations 
or lack of awareness about the limitations of calculators. Finally, the implications those elements 
have on the mathematical education are presented together with some conclusions.
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Uso e Abuso de Calculadoras: Implicações para a Educação 
Matemática

RESUMO
Promover a compreensão matemática e a noção de número é um objetivo da educação 

matemática atual. Este artigo apresenta uma visão histórica do uso de números e de processos 
de cálculo e reflete sobre a necessidade atual de calculadoras eletrônicas. A coexistência de dois 
sistemas matemáticos diferentes, um baseado na matemática axiomática grega e outro, o sistema 
de ponto flutuante, usado em calculadoras eletrônicas, pode levar a algumas confusões que afetam 
o ensino de matemática, especialmente no desenvolvimento do sentido numérico. O artigo também 
apresenta erros comuns causados pela falta de verificação dos resultados de cálculos ou falta de 
consciência sobre as limitações das calculadoras. Finalmente, as implicações desses elementos na 
educação matemática são apresentadas, juntamente com algumas conclusões.

Palavras-chave: Noção de número. Calculadoras Educação matemática. Cálculo escolar.

HISTORY
Knowledge of numbers, when they refer to a collection of real objects, has always 

been considered a characteristic that animals possess. A bird will protest if the number of 
eggs in the nest is less than what was there before. Jokingly, Professor Sancho Guimerá, 
one of the promotors of the Faculty of Mathematics at the University of Salamanca, 
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would always use his dog, Pinto, as the example of a good mathematician: if there were 
three sausages on one plate and two on another, Pinto would always go for the former. 
However, the concept of cardinal numbers is not something tangible at all, but rather 
abstract: it is not possible “to have the number 3 in your pocket”, although you can “have 
3 sweets in your pocket”. That is why this concept has not been linked naturally to human 
intelligence, even though it has always been associated with us. The truth is that it took 
many years, thousands of years, for this concept to become rooted in the human mind 
and accepted by it, and more complex numerical sets, such as whole numbers, took even 
longer. For example, the possibility of comparing different collections of objects is one 
of the references of human evolution. Bertrand Russell explained “it must have required 
many ages to discover that a brace of pheasants and a couple of days were both instances 
of the number two”. However, when humans managed to abstract the concepts of number 
and the different number systems, two different mathematical systems were developed 
(Mora, Mora-Pascual, García-Chamizo, & Signes-Pont 2017; Nagar, 2018). 

One of these was based on Greek axiomatic mathematics, in which numbers are 
“geometrized” and their properties studied for that purpose. The appearance of Pythagoras’ 
theorem for right-angled triangles led to the discovery of strange numbers: if the two 
smaller sides of this type of triangle measure 1 cm each, the longer side has a length 
of √2 cm, an amount that cannot be expressed in the form of a fraction. This led to the 
concept of irrational numbers, numbers that cannot be expressed as a quotient (in other 
words, those whose denominators are not powers of 10). This posed a new situation since 
√2, and similar numbers, could not be measured, running counter to the precision that 
other known numerical systems allowed. This circumstance led to the consideration of 
two groups of number sets: on one hand, the logical set of rational numbers, containing 
natural numbers and fractions, and on the other, the illogical set of irrational numbers, 
containing roots such as √2 and other numbers such as π and e. This classification has 
entailed diverse everyday arithmetic problems, which we shall take a look at later. 

The other mathematical system is that of floating point numbers, originally developed 
in 499 AD in India by the mathematician Aryabhata. In this system, numbers are obtained 
by measurement, and the strange ones, such as √2, were approximated to any level of 
accuracy required by taking as the value an expression in powers of 10. For example, √2 = 
1414/1000 would be a close enough approximation for the building of houses or temples. 
This is the floating point system, the one used in electronic calculators and computers. 
For example, √200000 would be written as 44721/100, that is, 4.4721x10^-2. The word 
“floating” is used because the -2 index signals the level of precision taken: if we needed 
greater precision, we could write √200000 = 4.472136x10^-4. In this system, it is not 
possible to reach total precision but neither is it necessary for practical objectives. 

Matching up these two systems is somewhat problematic given the current use 
of electronic calculators. And this is even more important in the case of Mathematics 
teaching at elementary level, an aspect that constantly comes up if the objective is to 
adapt the education of all citizens to their future daily life. Although readers will be 
familiar with many other examples, the ones we describe here are used to illustrate 
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what we mean. It seems that, from the perspective of Greek mathematics, electronic 
calculators produce strange results. How does this circumstance affect the teaching and 
learning of mathematics, the resolution of arithmetic problems or the development of 
numerical sense?

THE CURRENT SITUATION
a) In real life:

Example 1 (outside): One day, a housewife was affably conversing with Pete, the 
neighbourhood butcher, whose shop she visited frequently. She bought similar things 
there most of the time, and thus the price never varied much; she usually spent around 
25 Euros. On this day, however, when buying an amount that was not unusual for her, 
she had the following exchange with Pete:

‘That’ll be €29.58’.

‘But Pete, it can’t be! I’ve bought what I always buy. You must have made a 
mistake!’ 

‘Well!’ said Pete, pointing to the electronic scale with a calculator. ‘Calculators 
don’t make mistakes!’ 

‘Then you must be right – it’s me who’s confused. I must have bought more of 
something than I usually do’. 

But when she got home and looked at the receipt, she saw that Pete had pushed the 
button on the calculator twice when weighing the chicken breasts and therefore €4.22 
appeared twice! Even though she was sure he had not done it on purpose, and she was 
also certain that the calculator had not made a mistake, an error had taken place. This 
happened in a Spanish butcher shop but it could have happened anywhere. 

Example 2 (the student): In a classroom, a student is working with mixed numbers 
but considers that 2 ¼ plus 3 2/9 are, respectively, 2 ¼ = 2 × ¼ = ½ and 3 2/9 = 3 ×2/9 = 
6/9 = 2/3. A result of the anarchy in Mathematics conventions! This happened in a British 
classroom but could have happened anywhere. 

Example 3 (the teacher): In a state Mathematics examination for 16 year olds, 
the examinees were told to take 22/7 as the value of π. A subsequent question asked the 
students to identify which numbers, from among the following, were rational: {2.4; π; 
27/8; √2}. Which one or ones should the students have chosen? This happened in the 
UK but could have happened anywhere.

b) With the calculator: 

In Dynamic Geometry, computers obtain results that are impossible with Euclidean 
Geometry. Something similar occurs with electronic calculators, which also produce 
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strange outcomes. Some examples are given below [using a SHARP model EL-509A 
electronic calculator]: 

Example 1: Use the calculator to find the following series of square roots: 

√4 = 2 √2 = ? √√2 = ??  √√√2 = ???   √√√√2 = ????

It is easy to observe that            √4 = 2  

√2 = 1.4142136

√1.4142136 = 1.1892071

√1.1892071 = 1.0905077

√1.0905077 = 1.0442738.

However, if we write this same number on the screen and perform the reverse 
operation, we have 

(1.0442738)2 = 1.0905078

(1.0905078)2 = 1.1892072

(1.1892072)2 = 1.4142138

(1.4142138)2 = 2.0000005.

That is, the calculator is not making correct calculations in the two cases because 
different results are obtained: a number close to 2, above or below it, is obtained, but it is 
not exactly the number 2. Thus, what we have is only an approximation that goes against 
many elementary mathematical principles. 

Example 2: Calculate (1/3 + 1/5) + 2/3. 

This can be done two ways. One of them is to enter the fractions directly in the 
calculator as their decimal equivalents, that is: 1/3 = 0.333333; 1/5 = 0.2; 2/3 = 0.666666. 
The sum of these gives an answer of 1.2.

But it can also be calculated indirectly by manually entering these same decimal 
representations first without referring to the fractions they represent (that is, 0.333333; 
0.2; 0.666666). In this case, the answer given is 1.1999999. 

Although this may seem a bit contrived, the use of truncated limitless decimal 
representations has a significant impact on all of Greek mathematics. 

Example 3: Calculate (π^1.2)^(5/6). 

Since the calculator being uses does not allow fractions to be raised to a power, 
the value of 5/6 is considered and stored in the memory. Then π ^1.2 is calculated, and 
elevated to the number stored in the memory. The answer it gives is 3.14159. However, 
the answer should coincide with the calculator’s value of π: 3.1415927. 

Therefore, the properties of the indices are not fulfilled.
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RECOGNIZED POINTS OF VIEW
For a long time it was mistakenly thought that mathematical intelligence was 

exclusive to the human species and that animals were only guided by instinct. But in 
relatively simple circumstances, a domesticated animal such as a dog, cat, monkey or 
elephant rapidly perceives if an object disappears from a small familiar set. In a certain 
number of species, the behaviour of mothers shows that they know when one of their 
offspring has been snatched away. 

This situation shows that this kind of behaviour is conscious and that the notion of 
number is not totally foreign to animals. They have a natural disposition that allows them 
to recognize when a small number of objects, perceived a second time, has undergone 
a change. More specifically, this ability has been observed in certain birds subjected 
to prior training? Many ingenious experiments have shown that a goldfinch, taught to 
choose its food from between two little piles of grain, generally learns to distinguish three 
from one, three from two, four from two, four from three, and six from three. Even more 
striking is the case of nightingales, magpies and crows, which, without previous training, 
are clearly able to recognize specific amounts ranging from one to three or four. Let us 
look at a famous example:

“A man decided to kill a crow that had made its nest in the watchtower of a castle. 
He’d tried several times to surprise the bird, but every time he got close, the crow would 
leave the nest and perch on a nearby tree, returning when the man had left. One day the 
man decided to resort to cunning: he made two other men enter the tower and after a short 
time one of them left and the other remained. The crow, far from being taken in by this 
trap, waited until the second man left before returning to the nest. The next time three 
men entered, and two of them left after a few minutes, while the third one stayed behind 
as long as he wanted waiting for an opportunity to trap the crow. The crow, however, 
turned out to be more patient than he was. This happened several more times, always 
without success. Finally, the trick worked using four or five people, because the crow 
was unable to visually recognize the presence of more than three or four humans at the 
same time” (Ifrah, 1998, p.38). 

In another vein, Duea, Immerzeel, Ockenga and Tarr (1980) explained an experiment 
in which students were given 20 minutes to solve problems similar to ones appearing 
in their textbook. After collecting their papers, the teacher was surprised to observe that 
almost all the students had completed more than 26 of the 40 problems posed. Even more 
surprising was the fact that more than 90% of the answers were correct. This outcome 
was quite different to what had happened in other classrooms in similar circumstances. 
What had changed? Why were these students so successful in solving these problems? 
The answer: each of them had used a calculator! 

When adults have to do any kind of important arithmetic they use some type of 
calculator. Likewise, students can use it to do calculations without the inherent difficulties 
of working with pencil and paper, and thus can concentrate on the problem solving process. 
In this way their use of a calculator is not an end in itself, but rather a means to be able 
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to place more emphasis on the process than on the final outcome. This allows them to be 
unconcerned about accessory difficulties and therefore everyone can do it! (Koay, 2006, 
Lee, 2016; Sánchez & García, 2009).

IS IT ENOUGH TO VERIFY WITH CALCULATION? 
It is thought-provoking that today computers and calculators are considered 

important tools for doing calculations and it seems that many jobs and occupations could 
not be carried out as they are now without them. The general public consider that these 
machines know the most about mathematics and never make mistakes. People who use 
them in their work seem unable to live without them. People who use them in their work 
could not live without them. Nowadays, all mobile phones incorporate calculators among 
their basic applications and users often use it for to perform any calculations, however 
simple it might be. How can this be if computers do not really know numbers? Of course, 
this is not completely accurate because they do know the natural numbers, whole and 
rational numbers, but they do not know real numbers. Also, possible programming errors 
are not being taken into account, as in the case of the first batch of Pentium computers, 
errors which nobody would have known about if it had not been for a mathematician 
who discovered them by chance when using large numbers to verify certain properties. 
What is certain, however, is that they are instruments whose results cannot be taken as 
infallible by the general public. 

They have also become an everyday working tool for many mathematicians. It has 
been possible to demonstrate different theorems thanks to the help of powerful computers 
working over a certain period of time to arrive at a solution (Paulson, 2018; for example, 
by Apple and Haken, in 1976, to approach the whole range of possibilities and solve the 
four-colour theorem or the mathematician who discovered the highest prime number ever 
known and explained that he has done it while he slept). Are the proofs absolutely valid 
and rigorous even if they are not the most elegant and brilliant? That is, is verification 
sufficient or is a deductive proof also needed?

Let us take a look at the following investigation for students inspired by John 
Wallis (17th c.): 

(0 + 1)/(1 + 1) = ½

(0 + 1 + 2)/(2 + 2 + 2) = ½

(0 + 1 + 2 + 3)/(3 + 3 + 3 + 3) = ½

In the classroom, one verification can be sufficient when carried out in different 
situations. However, proving it for 10, 100 or even 1000 cases is not enough in the world 
of modern mathematics; the way of proceeding is different to the empirical deduction 
of the natural sciences. In the latter, a particular series of observations of a certain 
phenomenon makes it possible to establish a general law that governs all the possibilities 
of the phenomenon. For example, based on a finite number of observations it has been 
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verified that in the morning the Sun comes up in the East, and therefore tomorrow it will 
also come up in the East. However, in the mathematical sense it is not possible to confirm 
a general law after verification of a finite number of cases, large as that number may be, 
and even if no exception whatsoever is known. It would still be a hypothesis subject to 
possible modifications. 

We think that the discrepancies between working with numbers in a theoretical 
way as opposed to with a calculator come from using knowledge that in turn derives 
from different origins and training: the Indian and the Greek traditions. The differences 
in the epistemological orientation of these two traditions coincide directly with the 
question of which Mathematics should be taught: the Mathematics that requires a rigorous 
mathematical proof or the one that only needs a verification of calculation. Furthermore, 
there are “differences of knowledge” between these two traditions: in Indian mathematics 
there is no conflict between the visual proof and verification by calculation, on the one 
hand, and the proof by deduction, on the other (Joseph, 2015). We consider that this 
reflection can be of value for mathematical educators and philosophers. 

On the other hand, today a profound debate is going on in the educational world as to 
the need or not to carry out proofs in the maths classroom. For example, the official Spanish 
curriculum advises that they should not be addressed during the stage of compulsory 
secondary education (up to age 16), which clashes with an educational tradition based on 
the teaching-learning of mathematical theorems, accompanied by their own proofs, and 
concepts. This has provoked different reactions of perplexity and doubt among teachers, 
at the least, which links in with muffled resistance in the classroom, in some cases, or 
with submissive obedience without personal considerations, in others, and, in general, 
wide disagreement. As a result, the teaching of much of the contents is done intuitively 
and by approximations. Students often run into difficulties when they move on to the 
Upper Secondary stage, which works with rigorous mathematical proofs. 

The large number of proofs that aspiring professional mathematicians have to 
understand, study and in many cases reproduce when completing their university degree, 
and even until not so long ago, when finishing upper secondary education, can lead us 
to consider whether or not this background of knowledge is necessary for a citizenship 
or professional education in the case of all students. Undoubtedly, for professional 
mathematicians, knowing the proofs of many theorems can help them to understand the 
historical process in which they were created, go deeper in to the concepts themselves 
and work on other contents in a similar way, even though this does not always happen. 
However, this can be questionable in the case of pre-university students, who have been 
forced to learn a large number of theorems together with their rigorous proofs, in many 
cases entirely through memorization with no understanding of the content, abetted by the 
general permissiveness of the teachers. As a result, the learning does not remain with the 
student. This rote learning, completely detached from the students’ interests, was sorely 
in need of some kind of change. 

Another important circumstance is that many students start university with a 
profound ignorance of the differences between proof and verification, and generally, of 
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what mathematical reasoning is all about. We believe that these aspects are fundamental for 
any person’s all-round education and future life as a citizen, whatever that may be. That is 
why we assume that the official recommendations are more in the line of not working on 
“finished” rigorous mathematical proofs of theorems, knowledge of which is neither useful 
nor sensible even for many professional mathematicians. This does not mean drawing 
away from rigour and logical reasoning but rather the opposite, it should be coupled with 
an individual formalization of everything that is addressed in the mathematics classroom. 
If each student can manage to reason out the knowledge that he or she is constructing, 
personal and more meaningful learning will be possible. This is not utopian thinking if 
we take into account what Thornton (1998) said based on a dialogue between a mother 
and her two year old son: that reasoning can be done at almost any age (more examples 
in Chamoso, González, Hernández, & Martín, 2013):

Child (very offended): Jack broke my car!
Mother: Oh, I’m sure he didn’t...
Child: He did do it! He did! Harry didn’t go there (to the playroom) – Jack broke 
my car! 

It is also important to remember that the use of proofs in the mathematics classroom 
varies from one level to another and in different situations, but its main objective is to 
help students understand that it is necessary to confirm through reason the different types 
of knowledge that are being addressed in that classroom. Using proofs demonstrates to 
the students that what they are learning makes sense and has a logical development, 
something that can often be extrapolated to daily life.

A POSSIBLE SOLUTION
How can we get electronic calculators to be used correctly in society? Perhaps 

the solution can be found in history. Before they became available, human calculators 
did non-trivial arithmetic calculations: a “calculator” symbolizes a person who had 
learned how to do precise arithmetical calculations. In the Middle Ages, the Persian 
mathematician Al Kashi wrote the book entitled “The Key to Calculators”, which collected 
the principles of calculation that were used in the Hindu number system, including 
square roots. Subsequently, Simon Stevin, in the Netherlands, introduced the decimal 
number system into Europe in the seventeenth century. A calculator had to master and 
control the calculation techniques that were in these books. That person would not have 
been concerned with rigorous precision because, if he had been, he would have known 
that some quantities do not have an exact form in the decimal system. A calculator who 
only followed the dictates of Greek mathematics would only be useful for theoretical 
Geometry. In short, the recipe for a good mediaeval calculator would be: familiarity with 
the principles of calculation and a certain independence from the hegemonic principles 
of Greek mathematics.
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Let us consider this idea of calculator as a solution to the calculation problems found 
in society today. To do so we suggest a new updated version of the book “The Key to 
Calculators”. This key not only takes into account the principles of arithmetic calculation, 
but also the development of number sense and how it transforms under different actions. 
We therefore propose, first of all, a modern key to calculators that not only consists 
of learning the principles of arithmetic calculation but also includes something more 
important: the development of number sense and the knowledge that numbers can change 
according to how they work in different arithmetic situations. Clearly, Pete in our example 
above did not have number sense because he was not aware that the number 4.22 was 
entered into the electronic calculator in a strange way. It is obvious that this number sense 
needs to be inculcated at an early age in the same way language is. The logical thing 
would be to develop this number sense in students before they begin to handle electronic 
calculators, for the simple reason that the meaning of the result of each operation carried 
out by the calculator can be confirmed by the user if he or she has number sense. 

This proposal is framed within our idea that teaching mathematics should not 
resemble a transmission of knowledge in the form of an oracle. Calculators would be 
accepted in this way if their results were accepted as dogma, with no critical reactions 
or questions from students. However, the most up-to-date ideas on teaching encourage 
a more personal and meaningful mathematics, such that each result is the final point in 
a process of individual construction which is meant to be individual even when others 
have gone through a parallel process at one time or another. 

Let us take a look at the legacy left by the Greeks. It is accepted that current 
mathematics is still influenced by traditional Greek mathematics, as is school maths 
in some countries. This must be kept in mind when considering mathematics teaching. 
However, when teaching mathematics in school we differentiate between theory and 
pragmatism, that is, it is necessary to differentiate between abstract mathematics as a 
discipline and the practical maths needed for coping in society. What do we mean by 
this? Perhaps the following considerations can help to make sense of these ideas: the area 
of a triangle is obtained using a simple and well-known formula, but how many pieces 
of land are in the form of a perfect triangle? Approximate methods of measurement are 
needed. The square root of 2 is irrational and cannot be expressed exactly, but for the 
usual financial calculations it is enough to have an approximation of its value (it really 
is not possible to extend the tools). 

It must also be understood that number sense cannot be acquired solely by 
memorizing rules. And this sense will be difficult to retain when handling concepts that 
throw things out of joint, such as fractions, ratios or percentages, as we have seen. In fact, 
in Mathematics there are very few independent concepts. That is why a teaching based on 
the establishment of connections between apparently disparate concepts is fundamental for 
better and more meaningful learning. The equivalency among the following expressions 
would be an example of what we are talking about:

3/5 x 10 = 30/5  3:5 of 10 is 60% of 10 = 6 

9 + 3 = 12  9 - - 3 = 12 3 - -9 = 12 
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Thus, enabling students to understand the connections among the different 
arithmetic concepts can make it easier for them to acquire number sense in an integral 
and homogeneous way.

Another aspect that should be given importance is the way in which an arithmetic 
expression is entered into the calculator. For example, if we consider 4^3/2, the answer 
is 8 but if we enter it directly into the calculator we obtain 32 (4 raised to the 3rd power 
and divided by 2). This is due to the hierarchy of mathematical writing which, in many 
cases the calculator does not permit. This hierarchy of arithmetic operations is expressed 
with several mnemonics in different countries, for example, BODMAS for remember 
Brackets, Order, Division/Multiplication, Addition/Subtraction in the UK, India and 
Australia, BEDMAS for Brackets, Exponents, Division/Multiplication, Addition/
Subtraction in Canada and New Zealand or PEMDAS for Parentheses, Exponents, 
Multiplication/Division, Addition/Subtraction in the United States (Bay-Williams & 
Martinie, 2015).

These rules seem to have been forgotten in the face of the rapid and widespread 
use of calculator technology, but an effort must be made to avoid errors such as the one 
mentioned above. Moreover, when teaching students how to use calculators, emphasis 
must be placed on their limitations so that users can be aware that the answer they get may 
not always be correct (especially when working with fractions and irrational numbers, 
examples of which we have seen above).

Thus, since universities differentiate between the pure mathematics of Greek 
influence and the applied mathematics of everyday life, we should also make this 
distinction in the school curriculum. Nobody doubts that all schoolchildren need 
a mathematical training that they will use in their ordinary life, some of them, in 
addition, will need formal mathematics for further scientific training. This is one of the 
recommendations that have been given for years now in guiding the different school 
curricula reforms in different countries (Hayes, 2017). But these indications tend to 
remain on the theoretical plane and no guidelines are offered as to how to put them 
into practice. This may be the result of an overall philosophical shortcoming in the 
general directives for teaching mathematics. It generally comes to light in particular 
interpretations seeking to improve numeracy (Yasukawa, Rogers, Jackson, & Street, 
2018). In most cases, instead of fostering understanding, the latter are based on 
strengthening the development of routines in an attempt to improve exam outcomes, 
and number sense cannot be developed in this way. This development in the teaching 
of mathematics without a general philosophical foundation is widespread in most 
countries with one exception: Hungary. 

Since the beginning of the twentieth century, most Hungarian schools have followed 
a philosophy of social construction of mathematical knowledge in the classroom based on 
a high level of student interaction. This teaching model is applied in most mathematics 
classrooms in Hungary. Furthermore, according to the University of Plymouth’s Centre 
for Innovation in Mathematics Teaching (CIMT) (England), the use of specific materials 
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to explain concepts in Hungarian Mathematics classrooms at all levels means that their 
students attain more advanced learning than in other countries, although more research 
about it would be necessary. This helps to understand why Zoltan Dienes, the most 
famous maths teacher in Hungary, wanted children to be taught in this way from a very 
early age: an advanced number sense could facilitate the future use of the usual concepts 
of infinitesimal calculus. 

FINAL CONSIDERATIONS
Mathematics are understood as a social construction influenced by the changes in 

society (Restivo, 2017). This is why the tremendous technology development in the last 
decades shall have repercussions on how mathematics is taught (Prodromou & Lavicza, 
2017). Calculus is perhaps one of the most affected fields. This is an important aspect 
because computers are based on floating point system, which strongly differs from the 
numerical system used in traditional pure mathematics.

The benefits of technology cannot be disregarded and therefore calculators and 
computers are here to stay. They have great advantages, one of lesser importance being 
that of facilitating rapid calculations in complicated operations. These instruments also 
entail disadvantages, such as the fact that if they are not used critically they can breach 
the most elemental mathematical laws. Their disadvantages, however, should not impede 
future generations from taking an effective and positive use of the new technologies only 
due to an insufficiently tailored Mathematical Education. Otherwise, we might witness 
a metaphorical repetition of the burning of Parliament. 

After many attempts, the British Parliament finally accepted the Hindu-Arabic 
number system. This took place in the eighteenth century. At that time, the “tally sticks” 
used to count and which accumulated in the accounting offices were burnt in furnaces 
located in the basement of the Palace of Westminster. One time the fire got out of control 
and the Houses of Parliament burnt down (Dantzig, 1955, p.23). Perhaps in our day it is 
another kind of “tally stick” that is attaining great influence.
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