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ABSTRACT
Background: One of the great challenges for mathematics education in the 21st century is 

to alleviate the difficulties of students in the transition from arithmetic to algebra. There is already 
a consensus that there should not be a transition, as several experts have indicated algebraic 
approaches since the early years of schooling. Objectives: This study aims to describe and analyze 
the operative invariants of algebraic patterns present in the strategies of students of the 3rd grade 
of an elementary public school in the countryside of the state of Rio Grande do Sul. Design: The 
methodology used in this research was the clinical method of manipulation-formalization, created 
by Jean Piaget and applied in several of his studies. Setting and Participants: Students of the 3rd 
grade. Data collection and analysis: Clinical interviews. Results: We start from the assumptions 
of Gerard Vergnaud’s theory of conceptual fields to analyze the strategies used by the research 
participants. Conclusions: We identified four operative invariants: the theorems-in-action “count 
the places each time a table is introduced” and “add two places each time a table is introduced”, 
respectively linked with the concepts-in-action “putting the tables together” and “place at the ends 
of the tables”.

Keywords: Operative invariants; Algebraic pattern; Strategies.

Invariantes Operatórios de Padrão Algébrico Presentes nas Estratégias  
de Estudantes do 3º Ano do Ensino Fundamental

RESUMO
Contexto: Um dos grandes desafios para a educação matemática no século XXI é amenizar 

as dificuldades dos estudantes na chamada passagem da Aritmética para Álgebra. Já é consenso 
que não deve haver uma passagem, pois vários especialistas indicam abordagens algébricas 
desde os anos iniciais de escolaridade. Objetivos: O objetivo do presente trabalho é descrever 
e analisar os invariantes operatórios de padrão algébrico presentes nas estratégias de estudantes 
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do 3º ano do Ensino Fundamental de uma escola pública localizada no interior do estado do 
Rio Grande do Sul. Design: A metodologia utilizada nesta pesquisa foi o Método Clínico de 
Manipulação-Formalização, criado originalmente por Jean Piaget e aplicado em vários de seus 
estudos. Ambiente e participantes: Estudantes do 3º ano do Ensino Fundamental. Coleta e 
análise de dados: Entrevistas clínicas. Resultados: Partimos dos pressupostos da teoria dos 
campos conceituais de Gerard Vergnaud para analisar as estratégias utilizadas pelos participantes 
da pesquisa. Conclusões: Identificamos quatro invariantes operatórios: os teoremas-em-ação 
“contar os lugares cada vez que uma mesa é introduzida” e “adicionar dois lugares cada vez 
que uma mesa é introduzida”, respectivamente ligados com os conceitos-em-ação “junção das 
mesas” e “permanência dos lugares nas pontas das mesas”.

Palavras-chave: Invariantes operatórios; Padrão Algébrico; Estratégias.

INTRODUCTION

Algebra is one of the major areas of mathematics that comprises the study of 
equation solving methods and the more general properties of polynomials. According to 
Baumgart (1992), the word algebra, come from the Arabic word al-jabr, which is part of 
the title of the book Al-Kitabal-jabrwa’l Muqabalah, written by Mohammed ibn-Musa 
Al-Khwarizmi around 825 A.D.

Many historians date the emergence of Algebra in the 9th century A.D. because 
they considered Al-Khwarizmi’s work as the first text dealing specifically with algebraic 
methods. Even so, we can say that solving equations is much older, since there are records 
that Mesopotamians, as well as Egyptians, already solved some types of specific equations 
long before Arabs and Hindus did (Boyer, 1991).

The difference between the methods of the ancient peoples to the methods introduced 
by the Arabs is in representation. While the former were more dedicated to describing 
the resolution of practical problems, expressing the resolution through natural language, 
the Arabs created a specific language to communicate the most general ideas of their 
methods. We can think of a parallel concerning the children’s’ learning of Algebra, that 
is, at first, they express their algebraic ideas in their natural language, understanding 
and trying to generalize these ideas as they come in contact with gradually more formal 
problems throughout their schooling. Hence the importance of understanding how children 
construct his mental schemes in the face of problems that present algebraic ideas in a 
less formal language.

The objective of the present work is to describe and analyze the operative invariants 
of algebraic patterns present in the strategies of students of the 3rd grade of elementary 
education of a public school in the state of Rio Grande do Sul.

ALGEBRAIC THINKING IN THE EARLY YEARS

According to data from NCTM (2000), one of the great challenges for mathematics 
education in the 21st century is to alleviate the difficulties of students in the transition from 
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arithmetic to algebra. There is already a consensus that there should not be a transition, 
as several experts have indicated algebraic approaches since the early years of schooling. 
In several countries, algebra is already integrated into the curriculum, at all educational 
levels, from the first grade. This movement to include algebra since the early years has 
been called EarlyAlgebra internationally.

Since algebra was included in the curriculum of the first school years, several 
researchers have been studying how the children’s algebraic thinking works, to understand 
the elements that characterize a situation as algebraic, and also how the children’s strategies 
of representation evolve, until they can understand the formal language of algebra (Blanton 
& Kaput, 2005; Carpenter, Levi, Franke & Zeringue, 2005; Irwin & Britt, 2006; Canavarro, 
2007; Fujii & Stephens, 2008; Stephens & Wang, 2008; Blanton et al., 2015).

Blanton and Kaput (2005, p.413) produced the first important studies on 
EarlyAlgebra, which became a reference for several others, including presenting a 
classification adopted in later studies, dividing algebraic thinking into functional thinking 
and algebraic generalization. These authors define algebraic thinking as “the process by 
which students generalize mathematical ideas from a set of particular cases, establish 
these generalizations through argumentative discourse, and express them in progressively 
more formal and age-appropriate ways”.

The document of the MEC, Elementos Conceituais e Metodológicos para Definição 
dos Direitos de Aprendizagem e Desenvolvimento do Ciclo de Alfabetização (1o, 2o e 3o 
anos) do Ensino Fundamental /Conceptual and Methodological Elements to Define the 
Learning and Development Rights of the Literacy Cycle (1st, 2nd and 3rd grades) of 
Elementary Education (Brasil, 2012) considers algebraic thinking should be one of the 
subjects to be studied since the early years of elementary school. It is the first document 
that refers EarlyAlgebra in Brazil.

METHODOLOGICAL PROCEDURES

The methodology used in this research was the manipulation-formalization clinical 
method (Delval, 2002), originally conceived by Jean Piaget and applied in several of his 
studies. The activity proposed in the present work was based on a problem presented by 
Blanton et al. (2015, p. 85), in which the authors of that work also intended to study the 
notion of algebraic patterns.

To analyze the notion of the algebraic pattern, Blanton et al. (2015, p. 85, our 
translation) use the following problem: “Brady invited his friends to a birthday party. He 
wants to make sure that everyone has a place to sit. It has a square table. He can have 4 
seats on a square table, as shown in the figure. If you add another square table to the first, 
he can have 6 seats. a) If Brady continues to put the tables together this way, how many 
people will be able to sit at 3 tables? 4 tables? 5 tables? b) Do you notice any relationship 
in the table? Explain. c) Find the rule that describes the relationship between the number 
of tables and the number of people who can sit at the tables. Describe the rule in words. 
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d) Describe your rule using variables. What do your variables represent? e) If Brady puts 
10 tables together, how many people will be able to sit? Show how you got the answer”. 
This situation is illustrated in Figure 1 (Blanton et al., 2015).

Figure 1. Representation of the Table with Four and Six Seats. (Blanton et al., 2015)

Data collection was carried out with 24 students from the 3rd grade of elementary 
school (14 boys and 10 girls). The study was carried out in a public school on the outskirts 
of a city in the countryside of the state of Rio Grande do Sul. Students in the 3rd grade 
were chosen because this is the end of the literacy cycle, and the four activities applied 
in this research were adapted from the work of Blanton et al. (2015), which also uses 
subjects attending equivalent school level in the educational system of the United States 
of America. The material used is shown in Figure 2, below.

Figure 2. Activity Application Material.

We followed the protocols of the manipulation-formalization clinical method 
(Delval, 2002). For each of the 24 participants, we presented a fictional situation in 
which a boy, Bruno, invited his friends to a birthday party. He wants to make sure 
that everyone has a place to sit. At Bruno’s home there is a square table with four 
seats, but he had the idea of bringing another table together. The participant is asked 
how many friends can sit with two tables together. Then, the number of tables is 
gradually increased to analyze the participant’s generalization capacity, to capture 
the way he perceives the rule that is formed when the number of tables increases, 
and it is also possible to identify that there is a relationship between the number of 
tables and seats.
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Data analysis took place in three stages: categorization of the procedures performed 
by the participants, analysis based on the strategies constructed by the students, and 
classification of the levels of responses obtained from the interviews.

The research was carried out with the authorization of the school and the teacher 
regent of the class, so that the institution collected the students’ free and informed consent 
to participate in studies, advertising, use of images and participate in research when they 
enrolled for the activity.1

THEORETICAL ASSUMPTIONS

Over several decades, the French researcher Gerard Vergnaud studied the process 
of cognitive construction of the most elementary mathematical operations, such as 
addition, subtraction, multiplication, and division. Vergnaud (1990) proposes the theory 
of conceptual fields, defending the hypothesis that the brain does not develop a concept 
in a unique way, it is necessary that the subject comes into contact with other concepts, 
so that, in parallel, all of them can be developed. Hence the expression conceptual field, 
coined by Vergnaud.

The initial focus of Vergnaud’s research was elementary arithmetic operations 
(Verganud, 1997, 2009). According to the researcher, the addition operation, for example, 
does not develop if the subject does not have contact with situations that involve the 
concept of subtraction. For this reason, Vergnaud proposes that the conceptual additive 
field should be developed, which covers situations related to both addition and subtraction, 
since the two operations must be understood together, in parallel.

Vergnaud (1990) more precisely defines a conceptual field as the synthesis of 
three elements: a set of situations, a set of operative invariants, and a set of symbolic 
representations. The situations are presented to the subject, who needs to create schemes 
consisting of goals, anticipations, rules of action, inferences, and procedures that can be 
generalized for a class of situations. Such schemes make up the operative invariants. As the 
subject needs to represent the concepts and invariants he uses, he makes use of symbolic 
representations, progressively more complex, as he advances in the understanding of the 
concepts and the more general characteristics of the conceptual field.

The idea of the conceptual field was originally proposed by Vergnaud, but the 
operative invariants had already been proposed by his doctoral advisor, Jean Piaget (1971), 
who proposed before Vergnaud that each situation demands a different type of scheme 
from the subject. Piaget and Inhelder (1975, 1979) study the relationship between operative 

1 The study was not submitted to the Ethics Committee, because the research institution had not standardized the research in 
Human Sciences when the data was collected. The authors understood that the experiment did not offer any psychological and/
or physical risk to the research participants. The authors accept total responsibility for and explicitly exempt Acta Scientiae 
from any liabilities or consequences that may arise from this study. Therefore, authors agree to provide full assistance and 
compensation due to any possible damage to any of the research participants, per Resolution No. 510 of April 7, 2016, of the 
Conselho Nacional de Saúde/National Health Council.
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invariants and symbolic representations in more depth, concluding that operative invariants 
are the meanings of concepts, while symbolic representations are the signifiers.

In Vergnaud’s conceptual field theory (1990, 1997, 2009), invariants can be of two 
types: theorems-in-action and concepts-in-action. Theorems-in-action are propositions 
considered to be true by the subject without necessarily being tested, generalized, or 
proven, and which can be reformulated from new situations. Concepts-in-action are 
characteristics attributed to subjects or objects, which can be used as premises for 
theorems-in-action.

To characterize operative invariants of algebraic thinking is to describe and analyze 
the possible concepts-in-action and theorems-in-action, that is, used effectively by 
individuals who are in the process of forming elementary algebraic concepts, such as, for 
example, the idea of patterns. Therefore, in this work we start from the assumptions of the 
theory of conceptual fields to analyze the strategies used by the research participants.

RESULTS AND DISCUSSION

This section presents the results that were obtained by the application of Activity, 
focusing on the idea of pattern recognition. Pattern recognition is directly related to the 
algebraic idea of a variable, which is one of the main algebraic notions, according to 
Blanton et al. (2015). 

Standardization Procedures

This section presents the results of data collection from the qualitative step for 
the situation involving the idea of algebraic patterns in sequences of numbers or other 
representations. In this data collection, the focus was on analyzing whether students were 
able to recognize a pattern of numerical association between the number of tables and 
seats, and how they described the pattern found.

The students carried out several types of procedures in this activity. The first category 
of procedures that we highlighted was No Rationale, which is characterized by a reduced 
presence of causality in the way of handling materials and inferring a rule that relates 
the increase in the number of chairs to the number of tables. Table 1 shows some of the 
students’ statements while carrying out Activity.
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Table 1
Category Without Justification. 

No Rationale [17] _How many more seats do you think he will have to put, if he wants to put three 
tables? _Ten.

[19] _If I wanted to put another table (there were two tables), how many seats do you think 
there would be? _I think that nine. _Why nine? What account did you do? _I counted two 
plus four.

[21] _And if he puts the tables together like that, he put two tables, but what if he wants to 
put a third table, how many seats will he have to put at the table? (the student thinks for 
a long time) _Five.

The No-Rationale answers reveal the students find it difficult to understand the 
expression “the most”, already found in previous studies, as in the work of Beck and 
Silva (2015). The student [17] answers ten, thinking about the total number of seats, 
which nevertheless indicates a prediction based on an estimate that does not follow a 
well-defined rule, and that does not consider the use of the expression “over”. When asked 
why the answer would be nine, the student [19] explains that he counted “two plus four”, 
but this account does give the correct result, nor does it reflect the quantities involved in 
the problem, since there were two tables and six chairs.

The category of procedures that we call Not-Gathering-Tables-Together is 
characterized by the fact that there is an awareness that the number of seats would increase 
due to the increased number of tables, however, the fact that the tables need to be together 
is not taken into account. Participants that used this type of procedure just added another 
table and counted the number of seats. One participant missed the count, counting three 
more places, and the other one got the count right, however without gathering the tables 
together, as shown in Table 2.

Table 2
No-Gathering-Tables-Together Category.

No-Gathering-Tables-Together [1] _If he gathers two tables together, he knows that he will be able to invite 
six people, and if he gets one more table, three tables, how many people 
can stay? _I think that nine. _How did you think to estimate it? _I counted 
here, plus the other table that he could put here (placing the chairs around 
the tables, not leaning the tables against each other).

[5] _If he places another table here, how many seats will he have? _Twelve. 
_How do you know that the result is twelve? _ (the student thinks and 
redoes the activity) Ten, six plus four, gives ten (without leaning the tables 
against each other).

Participant [5] first answers twelve, probably making an estimate. After manipulating 
the tables, but without coupling them, she counts and answers ten, without paying attention 
to the fact that the tables should be together.
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Another category of procedures that has been verified is what we call Mix-Chairs. 
Students who presented procedures such as Mix-Chairs understand that there is a 
relationship between the number of tables and chairs, however they find it difficult to 
follow the pattern of one chair per place at the table. Table 3 below shows the use of this 
type of procedure.

Table 3
Mix-Chairs Category.

Mix-Chairs [3] _If I put another table, will there be three more seats? _Yes. _I asked this question in 
another school and another student said the result is 10, do you think he is right or that he is 
wrong? _If you put two, look, one, it is four, and if you couple two tables together, it is six, and 
if you add one more table, it will be nine, I can put one more. _And at the head of the table, 
can’t we put another chair? _Yes, then there was going to be one here and another one here 
(placing two chairs in the same place at the table).

[6] _If he put another table, how many chairs could he put? With three tables? _Twelve. How 
did you get to it? _Because I counted, there are six chairs here, then I counted (pointing at 
the tables, and counting places where there could be no chairs), seven, eight, nine, ten, 
eleven, twelve.

[12] _If he puts three tables, how many places will he have? _Sixteen. _How do you 
know it’s sixteen? _You just think with your head. _But how did you think with your head? 
_We have this here, then you put three more, it is sixteen. _Can you show here with the 
pieces? (the student takes the chairs and starts to distribute without a definite order or 
count) _It is twelve.

Student [6], for example, introduced chairs at the division of the tables, without 
following the initial pattern of a chair for each place on the table. So this student counted 
several places. Student [3] inserts two chairs at the same place at the table, which 
jeopardizes her appreciation of a numerical regularity in the increase in the number of 
places.

One of the students initially replied that three more chairs should be placed at 
the table. However, after the researcher insisted a little that he tried again, he realizes 
that he only needs two more chairs. We highlight this isolated response as another 
category, called Right-Chairs. This category gets its name because the correct number 
of additional places arose after the student tried to manipulate the chairs and realized 
that he did not need to add the chair at the head of the table. Table 4 illustrates this 
experimentation.

Table 4
Right-Chairs Category.

Right-Chairs [4] _If he wants to put another table here (there were already two), how many seats will he 
have? _Nine. _There are other chairs here, if you want to think. _(after trying again). Eight. 
_Another colleague said it is different. Do you think he’s right or wrong? _I think that he is 
wrong. _And what could he have done wrong? _The same thing I did, I didn’t know I had 
three more chairs to put.
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Student [4] tries to formulate an answer imagining that the three places that are not at 
the junction of the tables were empty. However, when he decides to try, he finds that there 
is no need to remove the place at the head of the table. Thus, empirical abstraction plays 
an important role in this change in answer. The researcher’s counter-argument emphasizes 
that the child is sure about the last answer, but this certainty is due to experimentation 
with the material made available.

We call Rule-Plus-One the category of procedures adopted by some students to 
add a place for each table introduced. Students who opted for this type of procedure did 
not get at the right answer. Although they tried to formulate a relationship between the 
number of tables and chairs, the lack of experimentation hindered the analysis of these 
participants, as shown in Table 5. 

Table 5
Rule-Plus-One Category.

Rule-Plus-One [2] _With two tables you have six, right? If he put another table there, how many places 
would he have? _Seven. _How did you get to it? _I imagined, I was looking at the chairs 
to see.

[7] _If he puts another table, how many chairs do you think you can use? _Seven. _How 
do you know it’s seven? _Because six plus one is seven. _So, if he puts another table, will 
he have another place? _ (after new manipulation attempts and some time for reflection) 
No, it will be eight. _How do you know it will be eight? _No, it is seven. _What is your 
final answer? _Seven.

[11] _On each place of the table there can only be one chair, so if you put one more table, 
how many places will you have? _Six. _So, how many chairs do you have here? _Seven. 
_Then, six or seven? _Seven.

[13] _If he puts another table (there were already two tables), how many 

places do you think there will be? _Seven. _Why seven? _Because he put one more.

As can be seen in Table 5, some students who opted for this type of procedure were 
in doubt when choosing their final answer. Student [13] makes it clear how he is building 
his rule. In the line “because he added one more”, he attributes the unitary increase in 
places to the unitary increase in tables. We can see that there is a belief that there is a 
two-way relationship between objects.

Despite the constitutive difficulties of the problem presented, including regarding 
the fact that the expression “the most” is in the questions addressing students, some 
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managed to get to the right answer, using appropriate means to infer the rule that lists 
tables and places. The most successful category of procedures in activity was what we 
call the Rule-Plus-Two, which consists of adding two seats for each table introduced. 
This characterizes the algebraic pattern present in the situation presented to students. The 
answers are shown in Table 6, below.

Table 6
Rule-Plus-Two Category.

Rule-Plus-Two [8] _And with four tables? _Now, it got difficult, hold on. _You can get the little dolls here, 
if you want. _Give me ten. _If I wanted to put another table, what do you think it would 
be? _Ih, now, it is difficult. Eleven, no, wait, twelve. _Is there any mathematical relationship 
there, every time you put a table, is there anything with the numbers? _It is difficult. _Let’s 
remember, with one table, four places, with two tables, six, with three tables, eight, with four 
tables, ten, five tables twelve. _Yes. _What is going on every time I put a table, how many 
places more do I have to put? _Three. Let’s think about the first case: how many places 
did I have when I placed two tables? _Six. _Then, how many more did I have? _Ih, you 
gave us a complicated account. Let’s think again: I had four places, so I decided to put a 
new table, how many more places now? _Six. _Então how many more are there, besides 
the ones we had? _Oito, there were eight. _So, is this your answer? _Yes.

[9] _Just doing the math: with one table, four places, with two tables, six places, with three 
tables, eight places. With four tables, what would be the number of places? _Ten. _How 
do you know it’s ten? _Because it takes two more. What if I put another table? _Twelve. 
And another table? _Fourteen.

[10] _Then it increases by...? _Two. _Each table that you increased, increased two more 
chairs? _Yup.

Student [9] infers the rule that lists tables and the number of places from some 
examples given by the researcher. The confirmation of the recognition of an algebraic 
pattern is in his statement “because it takes two more”, indicating that there is an 
understanding of the relationship “for each table introduced, two chairs must be added”. 
It is noteworthy that, although some students were able to obtain the correct answer to 
the problem, some suggestions given by the researcher were necessary. Students [8] and 
[10], for example, only arrived at the answer after several clarifications.

Most of the procedures adopted in activity, which analyzed the students’ ability to 
recognize algebraic patterns, was to add three chairs for each table introduced. We call 
this category of Rule-Plus-Three procedures, illustrated in Table 7.
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Table 7
Rule-Plus-Three Category.

Rule-Plus-Three [14] _If he puts another table here, how many more chairs will he have to put? _Three. 
(handling the chairs, the participant counts twice the same place, as she considers the 
chair that was at the end as one of the side chairs in the next configuration, with one more 
table, and, adds two more chairs, thus creating the rule of adding three more chairs each 
time a table is introduced).

[16] _And if I wanted to put another table there, how many more chairs would I have to 
put? _Four. _Four more? _Yes, one chair here, another here, no, three. _Explain how did 
you think that (pointing at the chairs and tables available for the experiment). _As I gathered 
here, there is no way to put another chair here, there is one here and two here, it will be 
three (does not consider the chair that was already at the table, counting one more).

[18] _And if he wanted to put three tables, how many more chairs would he have to 
put? _Three. _Can you explain why you thought of three? (the student uses the material 
made available, but counts the chair at the head of the table twice, which was already 
there when there were two tables). _With three tables, you put a chair here, another 
here, and another here.

[20] _If he places another table (there were already two), how many seats will he have? 
_Nine. _Why do you think it’s nine? _Because three plus three is six, plus three is nine. 
_Why did you add three? _I don’t know.

[23] _How many more chairs would he need to put here if he wanted to put another table 
here, in addition to the ones that are here? _I think he would put six more. _Let’s suppose 
he wanted to put another table, if he wanted to put another table together. How many 
chairs would he have to place to complete the tables? _Three, like this one, one, two, 
three (pointing at three places at the table, but considering the place of the head of the 
table in the two counts). Plus this one, four (and counts again the place at the other end). 
But, since these two remain (referring to the chairs at the two heads of the table), then he 
would only need to get two more. _And if he wanted to put another table? _Ouch, then, it 
would be, he would take four more chairs, which altogether would form twelve. _Ok, with 
two tables, he would need six chairs, with three tables, how many chairs does he need? 
_Nine (repeating places in his count, stating that three more chairs would be needed).

[24] _And if he wanted to join three tables, how many places would he have? _One, two, 
..., it is six. _Six, too? _Yes. If he puts another table? _No, eight. _How did you get to it? _In 
this way (and moves the chair away from the head, showing that there will be two more 
places available). _So, will he have to put more? _One more table. _Ok, another table, 
and how many more chairs? _Uhm, two. _And if he still wants, after that, to put another 
table, how many more chairs will he have to put? _Four more. _Ok, you say two here, 
and two more here? _Yes. _Do you think there is a certain mathematical relationship? 
For each table he puts, does he need to place a certain number of chairs? Do you think 
there is a specific number? _Yes. _How many? _How many tables? _If he puts one more 
table here, how many more chairs will he have to bring (there were already two tables)? 
_Eight. _If he puts another one? _Eleven. _Why would he have to put three more chairs 
yet? _Yes. _Each table he puts, how many more chairs does he have to put then? _Ok, if 
it is separated, he will have to put four, if it is all together, he will have to put three. 

Students in the Rule-Plus-Three category do not realize that the end chair does 
not need to be removed before another one can be placed. This is related to the lack of 
conservation in the participants’ thinking. Student [18], for example, indicates the places 
where chairs can be put, saying “with three tables, you put a chair here, another here, and 
another here”, and does not realize that the chair at the end does not need to be removed. 
It was interesting to note that the student [24] considered the possibility of not putting 
the tables together, correctly observing that if the tables were not put together, he would 
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need four more places, but incorrectly inferring that he would need three more places, 
in case it was necessary to couple the tables, that is, without considering that the end 
position would be preserved.

Two students disregarded the abutted tables but managed to formulate a rule 
based on the number of “extra” places that would be made available. These participants 
showed to perceive the role of the expression “extra” in the problem, however, as they 
did not realize the tables were abutted, the rule they constructed was ineffective to solve 
the situation. This category was called Four-More, because, by disregarding the tables 
abutted, all seats should be filled with new chairs, in the view of these students. These 
procedures are illustrated in Table 8, below.

Table 8
Rule-Four-More Category.

Four-More [15] _Look: before there were four, right, then he put one more table, how many more places 
did he have to put here? _Four. _And if he puts another table, how many more places will 
he have to put? _Four. _And if he puts one more later? _Four. _Will it always be the same 
thing? _Yes.

[22] _How many more would he have to put, if he were to put a third table here? _Four. _Four 
more? _Yup. _So, each table that he puts, he needs to put four more chairs? _Yes.

We observed that students [15] and [22] perceive an algebraic pattern in the situation 
presented. If it were not specified in the problem that the tables should be together, 
these procedures would have been effective. But for the situation presented, this type of 
procedure has become ineffective.

Discussion of Categories in the Light of Strategies

In the work by Blanton et al. (2015), the strategies used by the subjects of that study 
for the situation of the tables, regarding the functional thinking of the participants, are 
divided into three types: drawing, use of recursiveness and use of the functional rule.

The drawing strategy consists of reproducing the tables in written form, as many 
as are requested. For example, when the child is asked how many places it will take for 
ten tables to be introduced, he/she needs to draw the ten tables to visualize the concrete 
situation of having the physical layout of the tables and places.

The use of recursiveness is a strategy that consists of comparing the evolution of 
the two quantities. The child does not need an actual representation, but needs to compare 
the numerical evolution of the number of places, which varies according to the number 
of tables that are placed. For example, when we ask the child how many chairs will be 
needed for ten tables, he counts in pairs: two - six, three - eight, four - ten, five - twelve, 
six - fourteen, seven - sixteen, eight - eighteen, nine - twenty, ten - twenty-two. 
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The use of a functional rule was the most sophisticated strategy found by Blanton 
et al. (2015). The child capable of formulating an explanation based on a functional rule 
is able, for example, in the problem of ten tables, to realize that he/she must multiply 
the number of tables by two and add two more chairs, as this is the rule of association 
between the two magnitudes, which is built from experimentation with the materials 
made available for the activity to be carried.

From the categories of procedures that arise from this research, we can identify 
relationships with the strategy of designing and using recursiveness. None of the students 
used the strategy of the functional rule. 

The categories of No-Rationale, No-Putting-Tables-Together, and Four-More 
procedures are not associated with any of the types of strategies present in the work of 
Blanton et al. (2015), because in the case of No-Rationale causality is not present in 
the students’ thinking, and in the case of No-Putting-Tables-Together and Four-More 
procedures, the basic premise that the tables were together was not fulfilled, thus 
the construction of the rule is not consistent with the reality observed by the actual 
situation of the problem. Therefore, we consider such categories to be preoperative 
procedures.

We can affirm that the categories of Mix-Chairs, Right-Chairs, One-More-Rule, 
and Three-More-Rule are associated with the drawing strategy since such procedures 
reflect the need for concrete representation of the proposed situation. The mistakes of 
students who used such types of procedures refer to the absence of reversibility schemes 
and a deformity of the empirical abstraction, but the understanding of the need for table 
junction and the notion of a relationship between the number of tables and number of 
chairs reveal a great advance in the construction of algebraic patterns and the presence 
of causal relationships in the schemes these students produced. As drawing is a concrete 
way of operating, we can say that the procedures that we associate with the drawing 
strategies produced concrete and functional strategies in our research.

There is a strong similarity between the procedures presented by students who 
used procedures of the Two-More-Rule type and the strategy of using recursiveness in 
the work of Blanton et al. (2015). In both, students can relate the quantities involved 
directly and can predict results by observing the relationship between the number of 
tables and chairs. We can say that, in our research, functional-recursive strategies were 
used.

Level of Answers and Operative Invariants

Level I is characterized by the little use of causal schemes in the strategies 
used. It is subdivided into three sub-levels, according to the types of procedures the 
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participants used. Level II is characterized by the understanding of the need to put 
the tables together. This is what makes the difference between Level I and Level II. 
In the first level, students are not concerned whether the tables are together, which 
demonstrates an advance in the representation of the situation presented, although 
mistakes in the distribution of chairs or the absence of reversibility schemes are evident 
in the strategies students used.

The strategies in Level III overcome the difficulties of the previous levels since 
students who used Level III strategies realize the importance of putting the tables 
together and operate the places effectively, which allows for a correct construction of 
the functional rule that relates the number of tables and the number of chairs. From 
the procedures and strategies presented in this section, it was possible to construct 
Table 9, showing the levels of the answers to the situation of algebraic patterns treated 
from activity.

Table 9
Levels of the Answers for Activity.

Category Description

Level IA There is little or no causal relationship in the strategy used. The child estimates the number 
of places with no rationale, not relating it to the number of tables.

Level IB There is little or no causal relationship in the strategy used. The child does not realize the need 
to put the tables together. He/she randomly distributes the seats at tables.

Level IC There is little or no causal relationship in the strategy used. The child does not realize the need 
to put the tables together. He/she distributes four seats to each table that is introduced.

Level IIA
The child does not realize the need to put the tables together. He/she does not understand 
that each place on the table should only house one chair, as in the model presented. The child 
places more than one chair in some places.

Level IIB

The child realizes the need to put the tables together. The child only gets the number of 
chairs right after experimentation, by needing to put the chairs at the places, and still being 
unable to mentally formulate the rule that relates the number of chairs as a function of the 
number of tables.

Level IIC The child realizes the need to put the tables together. The child has a two-way relationship 
between chairs and tables.

Level IID
The child realizes the need to put the tables together. The absence of reversibility causes the 
head of the table to be counted twice when a table is added, distorting the functional rule that 
relates tables and chairs.

Level III The child uses recursiveness to predict how many seats are needed for any number of tables 
added.
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The relationship between students’ strategies, procedures, and levels of answers 
regarding Activity referring to the idea of algebraic patterns, is summarized in Table 10, 
below.

Table 10
Procedures, Strategies, and Levels of Algebraic Pattern.

Procedure Strategy Level

No-Rationale → Preoperative → IA
No-Putting-Tables-Together → Preoperative → IB
Mix-Chairs → Preoperative → IC
Right-Chairs → Functional-Concrete → IIA
One-More-Rule → Functional-Concrete → IIB
Three-More-Rule → Functional-Concrete → IIC
Four-More-Rule → Functional-Concrete → IID
Two-More-Rule → Functional-Recursive → III

The need to “put tables together” can be considered as a concept-in-action, which 
mobilizes the theorem-in-action of “counting places each time a table is introduced”. 
This count is present in the functional-concrete strategies, in which the child realizes 
that there is a relationship between the number of tables and chairs, but is not sure that 
he/she can build and use a mathematical calculation to estimate the number of places, 
from the number of tables.

In Level III, the use of the theorem-in-action “add two places each time a table 
is introduced” is evident, based on the concept-in-action of the “permanence of places 
at the ends of tables”, because the subjects of Level III realize that the chairs at the end 
of the tables are never removed, and two seats are always introduced at the sides of the 
new table.

CONCLUDING REMARKS

We identified four operative invariants: the theorems-in-action “counting the places 
each time a table is introduced” and “adding two places each time a table is introduced”, 
respectively linked with the concepts-in-action “putting tables together” and “permanence 
of chair at the ends of tables”.
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