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ABSTRACT
Background: Some inconsistencies that appeared when teaching Geometry - using 

Dynamical Geometry Softwares - to Mathematics undergraduate students, inspired this work . 
Objectives: To stress the potentialities and, specially, the limitations of Dynamical Geometry 
Softwares in order of using it correctly by teachers, pre-service teachers and students for learning and 
teaching situations and investigations in Geometry. Design: Critical analysis study of situations, with 
examples produced using Dynamical Geometry Softwares, in order to reveal some inconsistencies 
with respect to the theory. In particular, Geogebra was the software used. Setting and participants: 
Some of the examples presented here, elaborated in GeoGebra, were briefly discussed in classes 
of pre-service teachers of mathematics aiming at an awareness of the inconsistencies that may 
appear using a Dynamical Geometry Software. The authors are the unique participants of the 
elaboration of those examples. Data collection and analysis: There was not data collection, but 
only elaboration of examples in order to provide some arguments for future discussions. Results: 
Examples production shows some limitations of Dynamical Geometry Softwares and that those 
limitations are insurmountable due to epistemological reasons. Conclusions: Awareness of 
Dynamical Geometry Software limitations is fundamental for its correct use. Those limitations do 
not invalidate the software potential. On the contrary, being conscious of both potentialities and 
limitations of a hardware is a necessary condition to a fruitful use of it.
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O uso de Softwares de Geometria Dinâmica no estudo de Geometria Plana: 
potencialidades e limitações

 RESUMO
Contexto: Inconsistências surgidas com o uso de Softwares de Geometria Dinâmica 

ao lecionar a disciplina de Geometria para estudantes de um curso superior de Licenciatura 
em Matemática motivam este trabalho. Objetivos: Esse estudo tem por objetivo destacar as 
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potencialidades e, em especial, as limitações dos Softwares de Geometria Dinâmica de forma a 
serem utilizados corretamente por professores, professores em formação e estudantes no ensino-
aprendizagem e em investigações em Geometria. Design: Esse é um estudo de análise crítica 
com a produção de situações, com exemplos construídos em Softwares de Geometria Dinâmica, 
revelando inconsistências com a teoria. Em particular, o software utilizado neste trabalho foi o 
GeoGebra. Ambiente e participantes: Alguns dos exemplos aqui apresentados, construídos por 
meio do GeoGebra, foram brevemente discutidos com estudantes de licenciatura de um curso 
de licenciatura em matemática, no intuito de conscientizá-los das inconsistências que podem 
surgir com o uso de um Software de Geometria Dinâmica. Os autores são os únicos elaboradores 
desses exemplos. Coleta de dados e análise: Não houve coleta de dados, mas sim a produção de 
exemplos para fornecer elementos para futuras discussões. Resultados: A produção dos exemplos 
no GeoGebra mostra as limitações dos Softwares de Geometria Dinâmica e que essas limitações 
são intransponíveis por razões epistemológicas. Conclusões: A conscientização das limitações dos 
Softwares de Geometria Dinâmica é fundamental para a sua utilização correta. Essas limitações 
não invalidam o potencial desses softwares. Pelo contrário, o conhecimento das potencialidades e 
das limitações de uma ferramenta é condição necessária para saber utilizá-la com proveito.

Palavras-chave:  Softwares de Geometria Dinâmica; Potencialidades; Limitações; 
Geometria.

INTRODUCTION

Dynamic Geometry Software (DGS) has been used for nearly three decades as an 
auxiliary tool in the teaching and learning of geometry in elementary education (Gravina, 
2015; Laborde, 2000, 2001) and in studies and investigations in this area with a focus 
on both solving and posing problems (Leikin, 2015;  Mariotti & Baccalignni-Frank, 
2010).  Posing problems as an object of study has been approached with increasing 
interest  in  recent years  in  the field of Mathematics Education worldwide,  as  several 
articles reveal (Gontijo, 2007; Gontijo, Carvalho, Fonseca & Farias, 2019; Silver, 1997; 
Sriraman, 2004). These articles indicate that the students must have experience posing/
formulating new problems to participate more actively in the process of teaching and 
learning mathematics.

In this work, which is part of a thesis on creativity in mathematics, under 
development by one of the authors, some critical aspects of the DGSs will be addressed, 
without describing experiments carried out aiming at creating problems in Euclidean 
Geometry. These experiments/tasks, carried out with a DGS in classes of the mathematics 
degree course at the Federal University of Santa Catarina, raised some confrontational 
situations between practice and theory that the future elementary school teachers should 
be able to understand and explain.

This work  is divided  into  three parts. The first  part  brings  the  analysis of  the 
characteristics of a DGS, its potential, and its limitations. The study also highlights the 
advantages of GeoGebra compared to other DGSs, during the research on geometry 
problems. The second part will present examples in three situations the authors elaborated 
carefully in GeoGebra, in which the limitations and contradictions that may arise with 
the use of any DGS will be evident. It is necessary to emphasize that knowing how to 
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work correctly with a tool consists of first knowing its qualities and limitations. In the 
case of the DGS, the limitations are inevitable due to the reasons that will be exposed 
here. The third part will discuss the calculation errors inherent to the precision limitation 
of measurements.

DYNAMIC GEOMETRY SOFTWARES: POTENTIALITIES  
AND LIMITATIONS

The potential of a Dynamic Geometry Software (DGS) as an auxiliary tool for 
geometry teaching and learning in elementary schools has been widely discussed and 
disseminated (Gravina, 2015; Laborde, 2000, 2001; Leikin, 2015). A DGS can be 
described primarily as “a computational ruler and compass” that should relieve students 
from difficulties and  inaccuracies  they find when handling a  ruler, a compass, and a 
pencil. In fact, it does. The use of traditional tools often “does not work.” For example, 
take the construction of a regular hexagon or pentagon inscribed in a given circle with 
those tools. Although the construction is accurate in terms of its theoretical justification, 
in practice, the tools are inaccurate, and the polygon usually “does not close.” A DGS 
is more accurate than those three tools, but it is not exact, and we will see, during the 
development of our discussion, the reason for that. However, it is necessary to give the 
difference between precision and accuracy. Precision refers to the measurement with a 
calculable error. In practice, all measurements are subject to an error. Accuracy is the 
Platonic idealization of a measurement. Therefore, a measurement that is not accurate 
implies some kind of error, which, if not controlled, can affect results.

The highest potential of a DGS, however, is not its accuracy. Another even more 
important potentiality is characterized by the adjective “dynamics,” which is the possibility 
of modifying a figure while maintaining specific invariant attributes related to that dynamic 
figure. For example, when we plot the heights of a triangle and later modify that triangle, 
the segments plotted as heights also change to new heights of the modified triangle, which 
opens up an entirely new world in terms of teaching-learning and research in geometry. 
In the example mentioned, we can also observe the property of the intersection of the 
three heights’ support lines at a point called the orthocenter of the triangle. In GeoGebra, 
this dynamic feature is in the “Move” tool. This movement of the figures seems to be 
continuous, but only seemingly. An interesting parallel that could help us understand this 
aspect of the perception of the continuity of a movement would be the projection of a 
film in analog mode (as in the past, through celluloid material): the rapid succession of 
a (homothetic) projection on a screen of many pictures recorded on a celluloid roll that 
our eyes capture as something continuous. A large but finite, therefore discrete, number 
of frames, generates the film we are watching. The understanding of this aspect of a DGS 
helps us to understand its limitations. If they are well understood, which can generate 
some inconsistencies with the theory, we can verify that they are typical of any DGS. 
One must be aware that highlighting and trying to understand the limitations of a tool 
does not lessen its usefulness. Understanding these limitations allows us to work better 
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and correctly with them and even take advantage of them. These software programs 
are very similar in their properties, but some allow us to perform specific actions more 
advantageously in terms of their potential. On the other hand, this work will discuss why 
some limitations they share are insurmountable.

GeoGebra, the DGS that will be used in the situations in the next section, presents 
some beneficial aspects if compared to other DGS programs. First, GeoGebra is a free 
software, therefore, widely accessible. Second, GeoGebra introduced the idea of jointly 
presenting the algebraic (analytical) and figural (synthetic) representations of a geometric 
object, respectively, through its “Algebra” and “Graphics” windows. The “Algebra” 
window informs relevant quantitative data (area and perimeters of figures, lengths of 
segments, coordinates of points) that can be used in qualitative (synthetic) investigations. 
This window also makes it possible to “hide” or “display” some of the elements in the 
figure (meaning that these elements have not been erased and can be displayed back) 
more easily. Third, GeoGebra, with the possibility of automatically labelling a geometric 
object allows us, in some cases, to immediately perceive specific inconsistencies (such 
as the appearance of two points where there should only be one), a consequence of its 
limitations, something that can go unnoticed with other DGS programs. Little attention 
has been paid to this quality of GeoGebra, perhaps because little attention is paid to the 
limitations of the DGS programs in general. Fourth, in the “Rounding” option, GeoGebra 
brings a numerical precision of up to 15 decimal places, which also allows a better 
understanding of the precision/accuracy duality in measurements. Fifth, the possibility 
of zooming in or out a figure in the “Graphics” window allows us to analyze a figure 
in detail and, most importantly, perform a drag test more precisely. A drag test occurs 
when the “Move” tool is used to check, for example, a specific geometric property, as 
mentioned above, in the case of the orthocenter of a triangle. This test can also be carried 
out for quantitative checks, such as when determining maximum or minimum of areas, 
perimeters, or measures of segments and angles. There is a big difference, in terms of 
checking in a drag test, between moving a point on a straight line, a ray or a segment, 
and moving a point on the plane. In the first (one-dimensional) case, the point moves 
with one degree of freedom, and in the second (two-dimensional) case, the point moves 
with two degrees of freedom. This dimensional problem addressed by Duval (2012) 
influences our ability to perceive geometric properties of figures. An example of the first 
case is the investigation, via a DGS program, of Heron’s minimization problem and, for 
the second case, Fermat’s minimization problem (Pasquali, 2004, p. 20 and 61). There 
are other essential potentialities of GeoGebra, common to other DGS programs that will 
not be addressed here. Next, this study will present an analysis of the reasons for the 
limitations of a DGS.  

Two reasons explain why inconsistencies caused by the limitations of a DGS can 
occur: one, of an epistemological order, and another, of a physical (material/technological) 
order. The epistemological explanation has its origins about two and a half thousand years 
ago, when the Greek mathematicians (geometers) discovered the existence of pairs of 
incommeasurable segments (Fritz, 1944). This was perhaps one of the most dramatic 
moments in the history of mathematics: Platonic accuracy gave way to precision or 
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approximation of measures. Rightly so, mathematicians only came to understand this fact 
consistently at the end of the 19th century. The irrational numbers added innacuracy to our 
machines, however modern they may be. The impossibility of obtaining a measure with 
accuracy remains in our world essentially of rational numbers, and the DGS programs do 
not escape this. The second explanation is physical: the computer screen is not (also as a 
consequence of the epistemological reason mentioned above), nor can it be a “continuum,” 
and not even a dense set (in the topological sense) of points on a plane. It is only a finite 
set, therefore discrete, of points (pixels) that generate the images. For this reason, the 
measurement process in a DGS can be undermined.

EXAMPLES OF SITUATIONS THAT HIGHLIGHT THE LIMITATIONS 
OF A DGS, CAUSING THEORETICAL INCONSISTENCIES

This section will bring three situations that show limitations that can generate 
inconsistencies with the use of GeoGebra (or any other DGS). The examples described 
in them were used in activities with students of the mathematics course (both for teaching 
and researching, Licenciatura and Bacharelado, respectively) at UFSC, to make them 
aware of the DGS limitations. As students of a mathematics higher education course, 
they already had a basic understanding of mathematics (for example, in-depth knowledge 
of real numbers). The activities carried out with the students (their answers) will not be 
reported in this work. These examples deal with possible inconsistencies in the tangencies 
of a straight line with a circumference and a circumference with another circumference, 
the identification of lines due to the sensitivity of the measurement, and the impossibility 
to obtain intersection with geometric loci or even in the inaccuracy of geometric loci. 
As will be seen here, these limitations can confuse the students, not contributing to 
investigations aimed at posing new problems and conjectures in geometry. Possibly, as 
the definitions of the images on the computer screens (screen resolution) improve, some 
of the inconsistencies may not occur again; however, the measurement processes will 
never be exact.

The relationship between the knowledge of the potential and limitations of a tool 
such as a DGS, as well as all the concepts that emerge when each student uses the tool 
to solve geometric problems - and the theoretical meaning of this knowledge- is what 
characterizes the so-called semiotic potential of the tool (Bussi & Mariotti, 2008; Mariotti, 
2013; Stormowski, Gravina & Lima, 2013). The following is one aspect of GeoGebra’s 
semiotic potential.

Inconsistencies in tangency

This type of inconsistency can occur when the “Intersect Two Objects” tool is used 
to construct (correctly, from a theoretical point of view) a tangent line to a circle, and two 
contact points appear at its intersection. The two points are not visible (they overlap), 
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but their automatic labels reveal them (if we keep this option in “Labelling”). More 
specifically, students were asked to construct any triangle and trace the circumference 
inscribed in it. They found and inconsistency in the tangency. For a more precise and 
thorough explanation, the authors’ construction will be presented. 

Figure 1 is a copy of the print screen of a construction in GeoGebra, in which we 
tried to put as much information as possible, either in the “Algebra” or in the “Graphic” 
window using labels, texts, angle labelling, and point redefinition text, to convincingly 
expose the inconsistency in the tangency. The details in the figure are explained below. 
Figure 1 shows all values and objects mentioned in the explanation.

Figure 1
Inconsistency in the tangency of the circumference inscribed in a triangle

In a given triangle ABC, the bisectors f and g of the angles of vertices B and A, 
respectively, were plotted, finding the incenter D of the triangle. These bisectors were 
drawn according to the ruler-and-compass (theory) construction method, but the same 
result was obtained by using the “Bisector” tool. Then, a perpendicular j was drawn 
from D to the side AC of the triangle, finding point R where j intersects that side. Thus, 
DR is the radius of the circle t inscribed in the triangle, i.e., it must be tangent to the 
three sides of the triangle. Using the tool “Intersect Two Objects,” we tried to obtain the 
point of tangency of the inscribed circle t with the side c (AB) of the triangle. This point 
should be the intersection point of the circle inscribed with c. Surprisingly, two labels 
were exposed, F and G. Next, the angles α (DGB) and β (DFA) were measured, obtaining 
measurements smaller than 90°, but very “close” to this value (see the “Algebra” window). 
Then, a perpendicular m was drawn through center D tothe c side (AB) of the triangle, 
obtaining the point H at the intersection of m with that side. Thus, a right angle γ was 
obtained, with the vertex at that point. With the option of rounding of 15 decimal places 
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(confirmed by the values in the (“Algebra” window), we could observe that the three 
points F, G, and H were all distinct (those coordinates were transported to the lower part 
of the “Graphics” window). On the other hand, using the “Relation” of points (see the 
right part of the “Graphics” window), we could see that these three points are collinear 
(all are on the c side of the triangle) and are on the inscribed circumference t, which, 
theoretically, is impossible!

The two points of ‘tangency’ may not appear initially, though; but a small disturbance 
of the triangle (moving one of its vertices) can make these points appear. Throughout 
this work, we used the GeoGebra Classic 5.0.562.0-d version. GeoGebra Classic 6 and 
other known software program were also tested1, with the same results. This inconsistency 
with the theory may limit an investigative study. Suppose that a circumference obtained 
through some properties is, apparently, tangent to a given line in the figure. The test of 
the intersection of the two objects may indicate that there is no tangency but concurrency, 
which may be wrong. Of course, it is always possible to move some points, using the 
software dynamics to check whether the tangency is true or false.

Measurement sensitivity

Figure 2 shows a copy of a print screen of a construction of the experiment described 
below.

In the “Graphics” window, the axes were displayed, the rounding option was 
established to 15 decimal places and three points were labelled: the origin O = (0,0), the 
point P = (0,4) on the y axis and point Q = (4,0) on the x axis. Then, through its coordinates, 
a set of points on the positive x axis “very close” to the origin, and the respective lines 
passing through P and each of these points were constructed. The respective angles, with 
vertices at these points and passing through P and Q were measured:

point A = (10-15,0), line g (PA) and we measured α = QAP = 90°,

point B = (10-14,0), line h (PB) and we measured β = QBP = 90°,

point C = (10-13,0), line i (PC) and we measured γ = QCP = 90°,

point D = (10-12,0), line j (PD) and we measured δ = QDP = 90°,

point E = (10-11,0), line k (PE) and we measured ε = QEP = 90°,

point F = (10-10,0), line l (PF) and we measured ζ = QFP = 90°,

point G = (10-9.0, line m (PG) and we measured η = QGP = 90.00000001432396°,

point H = (10-8,0), line n (PH) and we measured θ = QHP = 90.00000014323946°.

1 The other software was Cabri® II Plus, version 1.4.3. In this case, apparently, a single point appeared, but this is because 
Cabri does not automatically label its points. When we placed the cursor over the point, the software asked: “Which object?” 
indicating a second point there, which was not detected immediately.
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Figure 2
Measure inconsistency - distinct and simultaneously coincident lines

The line f through P and O  was also plotted (coincident with the y axis). The 
coordinates of points O, P and Q and points A to H have been transcribed to the “Graphcis” 
window to make the equations of the lines f through n visible in the “Algebra “ window. 
This window displayed the measurements of three of the angles listed above, α, β, and 
γ. The labels for all angles were hidden, except for the last two, η and θ, which were 
transcribed to the “Graphics” window and the window displayed in yellow the information 
on the definition of the angle θ. Finally, through the “Redefine” tool, it is possible to 
display, in this window, which points define the lines from f to n, and which points define 
the angle η (this information covering a lower part of the “Algebra” window). 

What are the inconsistencies shown in Figure 2? Lines from g to m pass through 
P and, therefore, cross the y-axis, but their equations in the “Algebra” window reveal 
that these lines are parallel to that axis. The angles measured with vertices at points 
A to F and sides passing through P and Q (angles α, β, γ, δ, ε and ζ) measured 90° 
(not all  shown in  the figure) and,  from the angle η, at the vertex at point G, this 
measure becomes coherently a “little” greater than 90°, although the corresponding 
line m is still, according to its equation in the” Algebra” window, perpendicular to 
the x-axis. From point H onwards, the window displays, then, a straight line (n) with 
a negative angular slope and the corresponding angle θ with a measure “slightly” 
greater than 90°, which is also mathematically consistent. Therefore, we can say that 
the measurement sensitivity (allowing us to distinguish the geometric objects) is of 
the order of 10-8 units.
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Impossibility of obtaining intersection with geometric loci

Let us suppose we want to establish the geometric locus of a point with specific 
properties when studying a given construction in a figure. The “ Locus” tool makes it 
possible to find this set better than enabling “Trace on” the point. This geometric locus - 
usually a curve - appears in the “Graphics” window and is indicated in the “Algebra” 
window as lg...= Geometric Locus...It is not possible to know the equation of such a 
curve or to which class of curves it belongs. However, if there is a suspicion (intuition) 
of which curve it might be, then we can try to characterize it through some geometric 
(not necessarily analytical) property that is satisfied by that curve. For example, if the 
curve plotted as a geometric locus looks like a circumference, we can plot three segments 
with ends on that curve (chords), where any two are not parallel, and check if the 
perpendicular bisectors of the three segments are concurrent. This can be done, because 
it is possible to mark a point in a geometric locus using the “Point on Object” tool. In 
the case of a conic, there is a property that says that the midpoints of parallel “chords” 
(segments with ends at the conic) are collinear, with the straight lines containing the 
midpoints of each family of parallel strings concurrent at the point of intersection of 
the conical axes, if it is an ellipse or a hyperbola, and are parallel to the conical axis if 
it is a parabola (Yefimov, 1964, p. 109). However, for the conic as a geometric locus 
obtained with the software, the property described above is impossible to verify, while 
for the circumference, it may be found inconsistent with the theory.

Figure 3 is a copy of a print screen of a given construction through the “ Locus” 
tool in Geogebra, in which the geometric locus of the centers of tangent circles 
simultaneously to two given circles of different radii (hidden in the figure) was obtained. 
This geometric locus is known to be a hyperbola. In the figure, there is only a branch 
of the hyperbola built in two parts, which appear as lg1 and lg2. To try to apply the 
property mentioned in the previous paragraph, point I was marked in lg1 and point J 
marked in lg2, the chord IJ was drawn, and its midpoint L was marked. Then, a point 
K was marked in lg1 and the straight line j was drawn parallel to segment IJ. Finally, 
we tried to mark the intersection of j with lg2 (using the “Intersect Two Objects” tool), 
but the software did not respond, probably because the geometric locus is obtained 
numerically. Thus, we could not verify a possible conjecture2 if it were possible to 
intuit that the curve might be a conic. 

2 Cabri © II Plus labels this intersection, but the property did not verify, indicating problems with the software. It is actually 
more confusing than that. An intersection point is marked, but the software does not confirm that the point is over the object.
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Figure 3
Impossibility to mark intersection points with a geometric locus: the software does not indicate the intersection of 
line j with lg2

There is also another inconsistency, as shown in Figure 3. The point G generated 
the locus lg1 as the point F varied in the ray h (CF and DF are the two distances from 
the point G to the foci of the hyperbola - which does not appear in the figure - CD being 
their constant difference), but the relationship in the box on the right tells us that G does 
not belong to lg1.

However, one can try to work around this problem in two ways. The first way would 
be to mark five distinct points on the geometric locus obtained, through the “Point On 
Object” tool, and trace the conic that passes through these five points (using the “Conic 
through 5 Points” tool). However, this was tested and did not work either, which makes 
us suspect that the geometric locus obtained is not accurate. The other way would be to 
mark five distinct points using the property that generates the curve (without, however, 
using the geometric locus) and plot a conic through these five points. After obtaining 
more points through the generating property, a checkage could verify whether the points 
belonged to that conic (using the “Relation” tool that would say whether the point belongs 
to the object). This latter form is more effective and would prove, through a finite number 
of cases, whether the curve is conical.

For an investigation in which the geometric locus indicates that the curve is a 
circumference (which is always suspect, as it could be an ellipse of eccentricity very 
“close” to zero, or any closed curve), the property to be verified is apparently simpler. In 
fact, it would not be necessary to obtain intersections of straight lines with geometric loci. 
We could just draw three chords of the curve given by the geometric locus and check if 
their perpendicular bisectors were concurrent. However, this is not the case, because, as 
noted earlier, the geometric locus is not exact. Figure 4 is the print screen of the study of 
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the geometric locus of the centroid of triangles of fixed base AB and inscribed on a fixed 
circumference c. As the distance from the centroid to the midpoint M of AB is equal 
to one-third of the length of the median CM, then this locus is a circle c’ homothetic to 
circle c with a centre of homothety M and a ratio of one-third.

Figure 4
Point P, the intersection of the perpendicular bisectors m and n of the DE and EF chords, respectively, is not in 
the perpendicular bisector p of the FH string

Figure 4 shows locus lg1 in the “Graphics” window. The circumference c’, 
homothetic to the circumference c, does not appear in this window, but is highlighted 
in a “Relation” box at upper part of the window, and is indicated in “Algebra” window. 
Points D, E, F and H were taken in lg1.   We can see that the point of intersection P of 
the perpendicular bisectors m and n of the chords DE and EF, respectively, is not at 
the perpendicular bisector p of the chord FH, as it is indicated in the table “Relation,” 
therefore, lg1 would not be a circumference. The problem here could also be circumvented 
by choosing three different positions for the vertex C in the circumference c, then marking 
the three centroids corresponding to the ABC triangles, and tracing the circumference 
that passes through these three centroids. After that, it would be enough to check whether 
any other centroid of the ABC triangle, with C  going through c, would be on that 
circumference.  

These inconsistencies do not jeopardize an optimal investigative work, but the 
software user (teachers and students) must be aware that they can occur and be aware of 
the (epistemological and physical) reasons that cause them.

The next section will bring the analysis of the types of errors that induce calculations 
that may lead to some inaccuracies, and present a simulation of the plane to shed light on 
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how three distinct and known collinear points also appear as belonging to a circumference, 
as in the example shown in Figure 1.

PRECISION AND INACCURACY: CALCULATION ERRORS AND THE 
LIMITED PHYSICAL REPRESENTATION OF THE PLANE AS A SET 
OF DISCRETE POINTS

How is it possible that the inconsistency verified in the example in Figure 1 occurred? 
How does GeoGebra perform its calculations? Figure 5 is a copy of a print screen of 
the same situation, but with the calculations made by GeoGebra to verify whether the 
three collinear points F, G and H can be on the same circumference, by replacing their 
respective coordinates in the equations of the straight line i (which contains the c side of 
the triangle) and the circumference t.

The coordinates of the different points F, G, and H (transported to the bottom of the 
“Graphics” window) have been replaced in the equations of line i and the circumference 
t (both in red in the “Algebra” window). The results obtained (numbers in blue in the 
“Algebra “ window) with rounding of 10 significant digits by replacing the coordinates 
of the points F, G, and H in the equation of line i are identified as “Fnaretai,” “Gnaretai,” 
and “Hnaretai,” respectively, while the values obtained by replacing the coordinates of 
points F, G, and H in the equation of the circumference t are identified as “Fnocirculot,” 
Gnocirculot,” and” Hnocirculot,” respectively. Note that these values are identical, which is 
consistent with the relevance of those points being on the line and the circumference.  

Figure 5
GeoGebra calculations for the coordinates of points F, G, and H in the equations of line i and the circumference 
t with rounding of 10 significant digits
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However, if the same construction is done with rounding of 15 significant figures, 
then the result for “Hnocirculot” becomes (minimally) different from the other two, which 
was theoretically expected. Figure 6 shows this.

Figure 6
GeoGebra calculations for the coordinates of points F, G, and H in the equations of line i and the circumference 
t with rounding of 15 significant digits

These results show that GeoGebra identifies its objects in the “Graphics” window, 
according to calculations that indicate rounding errors. 

Rounding errors are associated with the number of significant digits with which a 
given system, or software, works. On the other hand, the so-called truncation errors occur 
in processes with an infinite number of operations or with a large number of digits (whole 
or decimal) and which, for practical reasons, are truncated (Barroso et al., 1987, p. 12). 
Rounding errors can spread in successive operations, and the results can also depend on 
the order in which the operations are performed. We will reproduce below an interesting 
example found in Barroso et al. (1987, p. 14). 

Consider the following system of two linear equations

0.0030 x1  + 30.0000 x2  = 5.0010

1.0000 x1   +    4.0000 x2   =  1.0000 

 The exact solution of this system is x1 = 1/3 and x2 = 1/6.  

GeoGebra solves the system correctly with rounding, as shown in Figure 7, that is a 
copy of a print screen of the system resolution by matrix reduced echelon form (matrices 
m1 and the corresponding echelon matrix m2). A potential problem is if there is an early 
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rounding, in which 5001/3, which arises from multiplying the first equation by 1/0.003 = 
1666.66..., is rounded up to 1667, then the system, after a few more operations between 
lines, becomes

     x1 + 10000 x2 = 1667 

                           x2 = 0.1667

This system would give solutions x1 = 0 and x2 = 0.1667, with x1 being wrong for 
the original system. See in Figure 7, the matrices m3 and its echelon m4.

In Figure 7,  the figural  representations of  the  two equations  in  the “Graphics” 
window show two lines that intersect at point A, whose coordinates give the solution of 
the system. 

In this example, there is, in fact, no problem with GeoGebra calculations, but these 
calculations can be changed by rounding, as seen in Figures 5 and 6.

Figure 7
System resolution by matrix reduced echelon form in GeoGebra

Resuming the example in Figure 1, it would be interesting to approach it from the 
figural point of view, considering that the computer screen plane is not a continuum. Doing 
a simulation, let us assume that the pixels on the computer screen are represented by the 
intersection points of a 0.001 distance mesh, as in Figure 8. Here, line r (in red) has an 
irrational angular slope, and therefore, it would not pass through any of the mesh’s vertices. 
Then, in this mesh, the line would be given by (isolated) discrete points, some marked 
in black in the figure, plus the three points F, G, and H (in red). Also, the circumference 
c that passes through these three points is plotted. Both line r and circumference c are 
represented in the figure for reference only, and their equations are represented there. 
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Figure 8
Line and circumference given by discrete points in a simulation of the pixel mesh

Figure 9
Line and circumference given by discrete point, in a simulation of the pixel mesh and zooming out

The zooming on the figure allows us to perceive the mesh points that make up the 
line and the circumference (Figure 9). Observe the points of the mesh accumulating in 
the two curves.
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Figure 10
Line and circumference given by discrete points in a simulation of the pixel mesh and zooming out. Note the 
apparent continuity of the curves through these points

With even greater zooming out, we can already see the accumulated mesh points 
forming apparent continuous curves (Figure 10).

The simulation in Figures 8, 9, and 10 shows how GeoGebra could recognize three 
distinct and collinear points F, G, and H that are in the same circumference. Figure 10 
gives the illusion that the line and the circumference are tangent.

CONCLUDING REMARKS

Dynamic Geometry Software programs (DGS) are powerful tools for teaching and 
learning and investigations in geometry. This work aimed to analyze the characteristics that 
reveal the potential and limitations of those software programs, particularly the GeoGebra. 
The main characteristic of a DGS is dynamism, which allows the user to move objects in 
a figure without changing previously established geometric properties. This characteristic, 
carried out by dragging objects (by using the ‘Move’ tool, in GeoGebra), allows us 
to discover and observe invariants in the figure. Besides, it enables, for investigation 
purposes, quantitative analysis on the variation of measures of areas, perimeters, lengths, 
and angles. These measures depend on the accuracy of the software, and this is where its 
limitations become evident.

The limitations of a DGS have been analyzed here through three situations that show 
meticulous examples. The reasons that generate the limitations are a consequence of a 
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fact (the existence of pairs of incommensurable segments), proven by the geometers of 
ancient Greece, that implies the impossibility of carrying out an accurate measurement. 
Also, computers are physically limited, as they display a discontinuous plane, formed 
by discrete points. Why does this matter, if it is possible to have reasonable precision in 
measurements? This is not the right question. Such limitations generate inconsistencies 
with the theory, and these inconsistencies are revealed here in the examples elaborated. 
The first example presented a situation of tangency of circumference and line, in which the 
software reveals three distinct points as belonging to both the line and the circumference. 
The second example shows lines that pass through a point on the y-axis, and through 
a point on the x-axis, both distinct from the origin. However, such lines appear in the 
“Algebra” window as parallel to the y-axis. Besides, there can also be some impossibilities 
generated by the limited accuracy. For example, the analysis of the geometric loci that 
the software generated can become an unfeasible task, as was shown in the example of 
the third situation in this work.

This work also discussed rounding errors resulting from the software’s precision 
limitations that can lead to erroneous results in solving a system of equations. Still, 
following this line of discussion on measurement accuracy, a simulation of the discrete 
“plane” was presented, understood by the software to justify the inconsistency about 
tangency that arose in the first example

We must emphasize that these limitations do not invalidate the software. On the 
contrary, we must know all the potentials and limitations of a tool to work with it. Teachers 
must be aware of these potentialities and limitations to explore the tool’s semiotic potential 
that will emerge from the experiences resulting from the tasks assigned to students. The 
inconsistencies that may arise can cause students to be confused and create obstacles 
(as they will no longer believe in theory) and prevent teachers from using the software 
safely in their classes.
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