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ABSTRACT 

Background: The formulation of hypotheses in mathematical modeling 

activities, although it has been pointed out as one of the specificities of this kind of 

activities, it is still little discussed by the research in the area of mathematical modeling. 

Purpose: In this paper we look for influences on mathematical modeling activities 

arising from the formulation of hypotheses. Design: Our statements are based on a 

theoretical framework about Wittgenstein's philosophy and previous studies related to 

hypotheses’ formulation as well as an empirical research. Scenario and participants: 

Modeling activities were performed by groups of students from different degrees. Data 

collection: In modeling classes, data were collected through audio and video 

recordings. The students also delivered the written records they produced. Findings: 

The findings indicate three categories for the formulation of hypotheses: hypotheses 

are formulated based on the students' view of the situation; hypotheses are based on 

students' experiences; hypotheses influence students' choices at different stages of the 

activity's development. Conclusion: The research concludes that the hypotheses 

determine the idealized situation, guide the mathematization and direct the students' 

actions in the development of the activity. In Wittgenstein's philosophical perspective, 

hypotheses are a way of perceiving reality and new experiences can lead to other 

formulations.  
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A Formulação de Hipóteses em Atividades de Modelagem Matemática 

 

RESUMO 

Contexto: A formulação de hipóteses em atividades de modelagem 

matemática, embora tenha sido apontada como uma das especificidades de atividades 

dessa natureza, ainda é pouco discutida nas pesquisas da área. Objetivo: Neste artigo 

investigamos desdobramentos para atividades de modelagem matemática decorrentes 

da formulação de hipóteses. Design: Nossas argumentações se fundamentam em um 

quadro teórico que considera elementos da filosofia de Wittgenstein e estudos 

anteriores relativos à formulação de hipóteses, bem como uma pesquisa empírica. 

Cenário e participantes: Atividades de modelagem são desenvolvidas por grupos de 

alunos de cursos distintos. Coleta de dados: Nas aulas com modelagem os dados foram 

coletados por meio de gravações em áudio e vídeo. Os alunos também entregaram seus 

registros escritos produzidos. Resultados: O processo analítico conduz a três categorias 

para a formulação de hipóteses: hipóteses são formuladas a partir de um modo de ver 

dos alunos com relação à situação investigada; hipóteses são fundamentadas em 

experiências dos alunos; hipóteses determinam as escolhas dos alunos nas diferentes 

fases do desenvolvimento da atividade. Conclusão: A pesquisa conclui que as hipóteses 

determinam a situação idealizada, orientam a matematização e direcionam as ações dos 

alunos no desenvolvimento da atividade. Na perspectiva filosófica de Wittgenstein as 

hipóteses são uma maneira de perceber a realidade e novas experiências podem levar a 

outras formulações. 

Palavras-chave: Modelagem Matemática; Hipóteses; Filosofia de 

Wittgenstein.  

 

INTRODUCTION 

The identification of specificities of mathematical modelling activities 

has deserved attention from educators and researchers for some time. What 

some authors, such as Bean (2001), Djepaxhija et al. (2015), and Almeida 

(2014) have been highlighting is that there are indications that the formulation 

of hypotheses is one of these specificities.  

Different fields of science recognise that the formulation, proof, and 

refutation of hypotheses cannot be dissociated from scientific activity in 

general. Regarding mathematical modelling, particularly, discussions on the 

subject have deserved some attention in investigations (Bean, 2012; Bassanezi, 

2002; Almeida, 2014; Grigoraş, 2012; Djepaxhija et al., 2015; Seino, 2005; 

Galbraith & Stilmann, 2001; Chang et al., 2018). Different arguments can be 

perceived in these discussions, being on the agenda from the meaning of the 
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word hypothesis to its inclusion in the development of mathematical modelling 

activities.  

What the research indicates is that the formulation of hypotheses is a 

possibility in mathematical modelling activities to deal with information, 

specificities or characteristics of situations of the reality not yet known when 

the mathematical approach of this situation begins. Dealing with these 

unknown aspects and finding a way to overcome them can be addressed by 

formulating hypotheses (Maaβ, 2010).  

As Galbraith and Stillman (2001) ponder, the hypotheses formulated 

cannot oversimplify the situation and should, above all, collaborate for 

interaction between the situation and the mathematics envisioned in 

mathematical modelling activities. However, formulating hypotheses may not 

be an easy task and, as Chang et al. (2018) point out, it is recurrently referred 

to as one of the greatest difficulties of students when they engage in modelling 

activities. 

In this article, our interest is directed to the question: what are the 

developments for the mathematical modelling activity from the formulation of 

hypotheses? Our discussion, on the one hand, is based on elements of Ludwig 

Wittgenstein's philosophy of language and how it has been interpreted in the 

scope of mathematics education. On the other hand, we based ourselves on an 

empirical study in which mathematical modelling activities were developed by 

two groups of students, one from a mathematics teaching degree course and the 

other from a postgraduate course in mathematics education.  

 

MATHEMATICAL MODELLING IN MATHEMATICS 

EDUCATION  

In general terms, mathematical modelling refers to the investigation of 

a situation of the reality through mathematics(Almeida, 2018; Blum & Niss, 

1991; Pollak, 2015; Meyer et al., 2011). [can we say here real situation?] The 

path of the modellers in this research can be guided by different configurations, 

considering the purposes of those who develop the activity and the perspectives 

of the mathematical modelling of these situations (Kaiser & Sriraman, 2006).  

The development of mathematical modelling activities in the classroom 

at different levels of education presupposes that modellers (students and 

teachers) engage in activities in which they need to identify a problem situation 

of reality and formulate a problem associated with this situation, "deciding what 
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to maintain and what to ignore in creating a mathematical model to deliberate 

on this problem and then deciding whether the results make sense in the face of 

the original situation" (Pollak, 2015, p. 267). 

To the procedures identified by Pollak (2015), we usually associate 

what Almeida, Silva, and Vertuan (2012) call phases of mathematical modelling 

and consist of: integration (simplification, idealisation, data collection, and 

formulation of a problem); mathematisation (transition from natural language 

to mathematical language, formulation of hypotheses, and definition of 

variables); resolution (obtaining a mathematical model, use of concepts, 

theorems, procedures, and mathematical techniques); interpretation of results 

and validation (analysis of the model and confrontation of results in the face of 

the situation of reality). [inteiração = interaction, integration, complementation] 

During the actions in these different phases, students or teachers share 

interests, problems, discussions, and make transitions between different 

languages. In this sense, Stillman et al. (2015) suggest that students and 

teachers, in fact, carry out the investigation of what the authors call an idealised 

situation and that results from reading and interpreting the real situation.  

Therefore, it would be worth discussing how this idealisation occurs in 

modelling activities, which modellers do aiming at a mathematical reading and 

interpretation of non-mathematical situations. In this context, our look into the 

article is addressed to formulating hypotheses.  

 

THE HYPOTHESES IN MATHEMATICAL MODELLING 

ACTIVITIES 

The conception of mathematical modelling as an investigation of a 

situation of reality through mathematics that guides our reflections on the 

formulation of hypotheses in modelling activities comprises the idea already 

conveyed by Bean (2001) that a specificity of mathematical modelling 

activities is "the requirement of hypotheses and simplifying approaches as 

requirements in the creation of the model" (p. 53).  

In the same direction, there are arguments by Stillman et al. (2015) 

considering that the situations of reality submitted to mathematical modelling 

in the classroom are situations idealised by modelling students and teachers. 

Massβ (2010) states that modelling activities in class usually begin with little 

information to support the mathematical modelling of the situation of the 

reality.  
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Thus, the discussion about the role of hypotheses in mathematical 

modelling activities, on the one hand, suggests the need to formulate 

hypotheses and, on the other hand, can turn to the developments of this 

formulation for activities of this type.  

Starting from the idea that “modelling consists of the art of 

transforming problems of reality into mathematical problems and solving them, 

interpreting their solutions in the language of the real world,” Bassanezi (2002, 

p. 16) states that “the hypotheses guide investigation” (p. 28). For the author, 

this formulation is anchored in assumptions such as the observation of data or 

information about the phenomenon, the comparison with the resolution of 

analogous problems, or even the experience of the modeller.  

Referring to the introduction of mathematical modelling in 

mathematics classes, Almeida and Vertuan (2011) also point out the need for 

hypotheses, and consider that: 

[...] modelling has as its main contribution investigations 

carried out in the classroom that have the problem as a starting 

point, the intentionality in the search, the hypotheses as factors 

that stand in the way to indicate directions and in which 

different mathematical resolutions are undertaken with a view 

to solving a problem (Almeida & Vertuan, 2011, p. 22). 

Grigoraş (2012) argues that formulating hypotheses is a component of 

the development of mathematical modelling activities that, although occurring 

in the initial stage of this development, can extend throughout the activity 

according to the complexity of the strategies, the methods used by the students, 

and the characteristics of the phenomenon under study.  

In Seino's (2005) study, students from basic education become aware 

of the importance of the hypotheses they formulate when they develop a 

mathematical modelling activity. What the author points out is that this 

formulation can occur at different times during the development of the activity, 

however, the teacher's intervention is necessary for students to perceive the 

relationship between the hypotheses and the response found.  

The interpretation that the formulation of hypotheses is a practice that 

allows students to overcome cognitive blocks that can prevent them from 

successfully carrying out the development of modelling activities is presented 

in Djepaxhija et al. (2015). The authors conclude that the definition of 

mathematical tools for the construction of the mathematical model of the 

situation can be attributed to the hypotheses.  
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As Galbraith and Stillman (2001) discuss, the hypotheses act as guesses 

that should be part of what the authors call genuine modelling activities. 

Although this formulation often occurs in a specific phase of modelling, from 

the perspective of these authors, its essential function lies in the integration of 

mathematics with the situation of reality as a key point for progress in the 

development of the mathematical modelling activity.  

In this article, we propose a reflection on the formulation of hypotheses 

and even on the word hypothesis itself in the context of the development of 

modelling activities considering elements of the philosopher Ludwig 

Wittgenstein's itinerary of thought on language, more specifically on what he 

characterises as language games. For Wittgenstein, the different practices in 

which language is used, or contexts in which it is included, are called language 

games, so that he states “I will also call ‘language games’ the set that comprises 

the language and the activities with which it is intertwined” (Wittgenstein, 

2013, § 07). Elsewhere the author points out “the meaning of a word is its use 

in the language” (Wittgenstein, 2013, § 43) and he called those uses language 

games. The actions with language, in this sense, are configured as language 

games, such as calculating, enunciating a poem, singing a song, among others. 

Mathematics and mathematical activity, especifically mathematical modelling 

activities, are made up of language games that modellers need to deal with. 

Regarding the word hypothesis, different meanings seem to be 

configured as a result of the language games in which the term appears, 

considering what dictionaries present to refer to the hypothesis or speak of its 

meaning. According to Abbagnano (2007), the hypothesis refers to an utterance 

that can only be proven, examined, verified indirectly through its consequences. 

For Japiassú and Marcondes (2008), a hypothesis is a provisional explanation 

of a phenomenon that must be proven by experimentation. In Houaiss (2009), 

a hypothesis can be a proposition that admits a principle from which a set of 

consequences can be deduced. 

Taking into account these different meanings, we could ask: when the 

context is mathematical modelling, how to talk about the meaning of the 

hypotheses? Are the hypotheses used in the development of mathematical 

modelling verifiable through its consequences? 

Some reflections on these issues may come from Wittgenstein's 

thinking regarding the hypotheses. When dealing with the nature of the 

hypotheses in his Philosophical Grammar, the philosopher states that a 

hypothesis can result from our experiences and, precisely for this reason, it can 

be modified, it can be replaced, and exemplifies his conjecture as follows: 
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If our experiences result in points on a straight line, the 

proposition that those experiences are multiple views of a 

straight line is a hypothesis. Hypothesis is a way of perceiving 

this reality. A new experience may coincide with it or not, and 

possibly make it necessary to modify the hypothesis 

(Wittgenstein, 2003, p. 169).  

In this context, formulating a hypothesis in mathematical modelling 

activities could also be associated with the modellers' experiences, either with 

the situation of reality, or with mathematics, or with mathematical modelling 

practices. The experience would result in ways of seeing to foster formulating 

hypotheses. Thus, a priori, there would be no right or wrong hypotheses. 

However, the modeller' experience and his/her information about the situation 

may lead to formulations whose adequacy and veracity can be confirmed when 

the model is considered adequate or when it meets the interests of the modeller 

and a community.  

The modellers' experiences are also mentioned in Chang et al. (2018), 

who suggest that the hypotheses formulated can be separated into two groups: 

non-numeric, which relate to the conditions of the situation investigated and 

involve extra mathematical knowledge; numerical, which aim to overcome the 

lack of quantitative information about the situation.  

Considering it necessary to confirm the veracity of a hypothesis so that 

it is useful in the language game in which we are, Wittgenstein says:  

I may wonder whether the body I see a sphere, but I cannot 

wonder that, from here, it seems to be something like a sphere. 

The mechanism of the hypothesis would not work if the 

appearance were also doubtful so that we could not verify 

beyond doubt even a facet of the hypothesis. If there was a 

doubt in the case, what would eliminate the doubt? If this 

connection were also loose, there would be nothing with which 

to confirm a hypothesis and it would hover in the air entirely, 

entirely aimless (and, therefore, useless) (Wittgenstein, 2003, 

p. 171). [não tenho como verificar se há uma versão em inglês, 

fiz a minha própria tradução] 

An interpretation of Wittgenstein's assertion leads us to consider that, 

even if hypotheses are formulated in a state of doubt of the modellers, they need 

to be permeated with some certainty, because if doubt prevails, actions are not 

defined. It seems to be with this understanding that in Almeida (2014) 
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hypotheses in mathematical modelling activities are characterised as well-

founded assumptions, the foundation of which derives from indications, facts, 

and information related to the situation of the reality that is under investigation. 

We can also consider that the idea of guesses suggested by Galbrath and 

Stillman (2001) is supported by Wittgenstein's reasoning, considering that, 

according to them, on the one hand, guesses include modellers' experiences and 

on the other, simplify the problem so that, although doubts remain, there is 

some certainty to guide the mathematical modelling of the situation.  

The migration of Wittgenstein's ideas to the scope of mathematics 

education leads us to consider that, on the one hand, the formulation of 

hypotheses in mathematical modelling activities cannot occur unrelated to the 

characteristics of the situation. On the other hand, it also requires some 

experience or some anticipation, as considered by Niss (2010) and Almeida 

(2018), related to both mathematical knowledge, information about reality, and 

their experience with the development of mathematical modelling activities. 

These aspects favour identification in relation to the functioning of the 

mechanism of the hypothesis, as Wittgenstein considers.  

Taking into account these approximations glimpsed between 

Wittgenstein's thought and hypotheses, the empirical research aims to foster 

and expand the perspectives pointed out about formulating hypotheses in the 

development of mathematical modelling activities and give indications of the 

developments for the activity resulting from this formulation.  

 

METHODOLOGY1 

The empirical research carried out includes two mathematical 

modelling activities. One of them was developed by a group of students in the 

Mathematical Modelling module offered by a postgraduate programme in 

mathematics education at a public university. In this module, attended by 20 

students, the different groups developed activities, and the theme of interest 

was defined by each group. In this article, we refer to the activity of one of these 

groups and the choice of this group stems from the quality of the data obtained 

and from the emphasis of this group on formulating hypotheses. The other 

                                    
1 The data used in the research are not part of a project submitted to the Ethics Committee. The 

authors are responsible for submitting data, and the journal Acta Scientiae is exempt from any 

responsibility. According to Resolution No. 510, of April 7, 2016, of the National Health Council 

of Brazil, full assistance and eventual compensation for any damage resulting from any of the 

research participants is an authors’ attribution. 
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activity - the theme of which was suggested by the teacher - was developed by 

21 students of a mathematics teaching degree course in the module 

Mathematical Modelling from the Mathematics Education Perspective. In this 

module, the same activity was developed by all groups of students. In the 

article, we included the development of one of these groups. The group was 

chosen due to the quality of the data obtained and the information of the group 

about the issue investigated in this article. Both modules were taught by one of 

the authors of this article.  

From a methodological point of view, this is a qualitative research. The 

analytical process is related to the data that were obtained from the reports of 

the activities delivered by the students and transcripts of audio and video 

recordings made during the classes in which the activities were developed, and 

the presentation of the works of each of the two groups to all students in each 

of the disciplines. The interpretative analysis of those data in the light of the 

referred theoretical framework leads us to characterise categories related to the 

developments for the activities resulting from students' hypotheses formulation.  

 

The first activity 

This activity refers to the monitoring of the heart rate of individuals 

during physical exercises. It was developed by a group of students in the 

Mathematical Modelling module offered by a postgraduate programme in 

mathematics education. According to their report, the students felt motivated to 

know how each person's physical fitness influences performance in physical 

exercises. Thus, from information on specialised websites and books, they 

realised that there are different types of tests that can be used in this 

investigation. They opted for one of these tests, known as the Léger and 

Lambert test2 and set as the objective of the activity to build a mathematical 

model that describes the variation of an individual's heart rate during the Léger 

and Lambert test, popularly known as the 20-m shuttle run test.  

The group faced the need to collect data from people who had different 

habits regarding physical activities. Therefore the students themselves 

constructed the data through an experimental procedure. Among students 

involved and their families, they chose four subjects (runners), two sedentary 

and two who declared to exercise regularly, one of them being a professional in 

physical education area, who knew the Léger and Lambert test. With materials 

                                    
2 Details of the method are in Duarte & Duarte (2001). 
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such as stopwatch, frequency meter, tape measure, adhesive tape and audios, 

the group of students demarcated the distance on a sports court as indicated by 

the instructions for the test and recorded an audio and video for each individual 

who took it. For this article, we bring the data students' collected from a runner 

(Figure 1). 

Figure 1 

Data collected from a runner's performance in the Léger and Lambert Test  

 
 

The students' mathematical approach of this situation began with the 

interpretation of the data obtained, providing information about the situation. 

Their report suggests that this first interpretation of the data resulted from the 

formulation of three hypotheses: H1.1: There is a regularity in the variation of 

heart rate; H2.1: There is a relationship between the variation of heart rate and 

the distance the runner traveled; H3.1: The runner's heart rate increases and tends 

to stabilise as it approaches his/her maximum. 

Using the data in Figure 1 and these hypotheses, the students 

mathematised the situation and built a mathematical model using the Ford-

Walford method as3 shown in Figure 2. The validation of the model in this case 

was done by the students by comparing the observed (blue dots) with data 

obtained by the model (yellow curve), as shown in the image in Figure 2. [the 

observed...what?]  

                                    
3Method to determine the stability value in asymptotic models and described in detail in 

Bassanezi (2002).  
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Figure 2 

Mathematisation and constructed mathematical model 

 

An interpretative analysis of the consequences of those hypotheses for 

the development of the activity leads us to some inferences between the 

relationship of the hypotheses with the other students' referrals.  

Hypothesis H1.1 (There is a regularity in the variation of the heart rate) 

seems to be based on the characteristic of the heart rate phenomenon: the need 

for a regularity of the beats. In fact, although the students can observe some 

variability in heartbeat, in this hypothesis, they suppose the movement should 

be regular, considering the runner's physical preparation. We can say that H1.1 

aims to elucidate characteristics of the problem to be investigated, thus being a 

way of seeing the situation or perhaps an interpretation. And, according to 

Wittgenstein (2013, p. 276), “to interpret is to think, to act; seeing is a state”. 

The action, in this case, makes it possible to think about which mathematics to 

use to solve the problem and how to use it to understand the variation of the 

heart rate in the Léger and Lambert test. In this context, the first hypothesis was 

formulated as a baseline for reasoning, a path to follow to solve a problem, i.e., 

a guide for research as argued in Almeida (2014). 

Regarding hypothesis H2.1 ( There is a relationship between the 

variation of heart rate and the distance traveled by the runner), it clearly 

contributes to the mathematical referral of the situation. Indeed, as shown in 

Figure 1, time, distance traveled, and heartbeat are the three variables included 

in the collected data in this case. It is possible to affirm that this hypothesis 

guides the students' noticing to define which mathematics they will use in the 
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elaboration of the mathematical model, since unsing the three variables would 

imply constructing a model based on a function of two independent variables, 

or, in two functions of an independent variable (variation of heart rate as a 

function of the distance traveled; distance traveled as a function of the time 

spent). 

The students inform both in the report and in the presentation of the 

activity to their colleagues that the Léger and Lambert test have standardised 

stages, thus, they consider it appropriate to elaborate a model considering the 

variation of the heart rate as a function of the distance traveled. This fact meets 

Almeida and Vertuan's (2011) indications that the hypotheses are factors that 

stand in the way to indicate directions and in which different mathematical 

resolutions are undertaken to solve the problem. Therefore, we infer that H2.1 

assumes in the activity the role of delimiting and simplifying the mathematical 

situation to be solved by the students. What mathematics should be considered 

stems from the modellers' ways of seeing the situation, their observation and 

experience, and the information they have about the situation.  

From the two initial hypotheses, students enter the construction of a 

mathematical model guided by the third hypothesis formulated, H3.1 ( The 

behavior of the heart rate is increasing and tends to stabilize as it approaches 

the runner's maximum heart rate). In presenting the activity to all students in 

the module, the students in the group justify this hypothesis: “We had to 

consider that the beat does not increase indefinitely and this in mathematics 

means thinking of a function that has a 4  horizontal asymptote” (audio 

transcription of the activity presentation). Another student then adds: “That is 

why we chose a function of this type,”, pointing to the slide with the 

information: 
1de.b

a
)d(F


  , in which  Rba ,,   e F  is the heart rate 

(bpm), d is the distance (m). (audio transcription of the activity presentation) 

Using the data in Figure 1, the students built the mathematical model for the 

situation as shown in Figure 2.  

Thus, we can consider that hypothesis H3.1 refers to the use of 

mathematical language available to modellers, a conventional language of an 

objective nature, with specific rules and grammar. This hypothesis is seen as a 

law that guides the students. We can say that this law reflects an expectation of 

                                    
4The horizontal asymptote to which the student refers in this activity is related to the 

value of stability for the heartbeat.  
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the group regarding which mathematics to use to build the mathematical model 

and, therefore, an expectation to obtain a solution to the problem.  

The image in Figure 2 indicates that the behaviour of the constructed 

mathematical model (in yellow) does not correspond, point by point, to the data 

collected during the corridor test (blue dots), which corroborates the idea that a 

hypothesis in this case leads to an approximation to notice the situation and that 

can be modified according to the experience of the modeller, with the way of 

seeing and interpreting this situation. They observed that the limiting value (the 

asymptote) for the subject's heart rate obtained through a mathematical method 

- 211 bpm - is higher than the maximum estimated heart rate according to the 

health area literature, which indicates the value of 186.7 bpm.  

 

The second activity 

This activity was developed by students of the mathematics teaching 

degree course during four classes of the module Mathematical Modelling from 

the Mathematics Education Perspective in the second semester of 2019. 

Students developed the activity in groups. We are referring here to the 

development of one of these groups.  

Figure 3 

Image taken to the students by the teacher (Exame magazine of January 19, 

2015) 

 

The activity originated in a situation presented to the students by the 

teacher as shown in Figure 3. This image, published in Exame magazine, 

follows a report on the inequality in the distribution of wealth in the world. 
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According to the report, the graphic intends to draw attention to the fact that 

inequality has grown from 2000 to 2014. According to the report, the image 

should highlight the impact of the distribution of global wealth, indicating a 

relationship between the wealth of the 1% of the richest people in the world, in 

relation to the wealth of the other 99% of the population.  

From interpreting the situation presented in this image, a mathematical 

work was triggered, aiming to analyse the behaviour of the distribution of 

wealth. In other words, as in the previous activity, in this activity, there is a 

clearly defined problem with respect to the phenomenon to be investigated. 

Instead, what students would do is present, through mathematics, an analysis 

of the situation seen in the image.  

The students involved in this research envisioned a dynamic for the 

image by formulating four hypotheses throughout the development of the 

activity and making use of GeoGebra software resources for the mathematical 

approach of the situation.  

Initially, the students defined the hypothesis H1,2: there is a possibility 

that the wealth of the 1% richest will reach the wealth of the other 99% of the 

population, which, according to the report delivered by the students, is "due to 

the feeling that the image for the period from 2000 to 2014 indicates that there 

is a possibility that these two curves will intercept some year after 2014 if there 

is no change in the behaviour of the situation" (students' report).  

This hypothesis gives rise to the phase of mathematisation, when they 

must see beyond the image per se and notice which mathematics can be used to 

understand how this situation of the distribution of wealth will behave over 

time. Therefore, the hypothesis acts as a guide for the application of 

mathematical rules from the data on the situation identified in Figure 3. 

To guide the construction of a mathematical model capable of enabling 

the estimates for the approximation of the riches of the two groups of the 

population, the students defined a second hypothesis: H2.2: From the 

information in the image of Figure 3 we will adjust linear models to the data. 

The construction of the model was mediated by the resources of the GeoGebra 

software and began with the students' insertion of data on the situation in the 

software, as shown in Figure 4. In the image, the values in column A (0,1,2,3,4) 

represent, respectively, the years 2009 to 2014, and the values in column B an 

approximation according to the graph of the wealth of the richest 1% and the 

other 99% of the population.  
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Figure 4 

Mathematisation of the situation using GeoGebra 

 

Using the Curve Fitting Toolbox in the software , the students built the 

linear models. [verificar] For the evolution of the riches of the 99% of the 

population, they obtained f(x)= -1.05x +43.92 , and for the evolution of the 

richest 1% of the population, the model obtained was g(x)= -0.97x +56.34 

(Figure 5 (a)). These models led students to conclude that: "In 2016, the wealth 

of the two groups already matched, i.e., from that year, the wealth of the 1% 

richest exceeded that of the other 99% of the world's population" (students' 

report). 

As stated during the presentation of the work in class (presentation 

recorded in audio and video), "taking advantage of the resources of the 

software, we can do other simulations and therefore we define another 

hypothesis" (transcription of one student's audio recording). The hypothesis to 

which the student refers is: H3,2: Let us suppose an exponential behaviour for 

the distributions of wealth over time, from the year 2009. 

Using the same tool in GeoGebra, they found models 
0.02( ) 67.75 xh x e  and 

0.02( ) 67.75 xj x e  to describe the evolution of the 

wealth of the richest 1% and the evolution of the wealth of the other 99% from 

2009, respectively (Figure 5 (b)). Also in this case, equaling the two models, 

the students conclude that, in 2006, the wealth of the two groups was equal 

already. 
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Based on the models, the students infer: "We can conclude that the 

distribution of wealth tends to become increasingly unequal over time" 

(students' report). To investigate how this situation could behave over time, the 

students defined more hypotheses: H4,2: The behaviour of the distribution of 

wealth will not change sharply over the next 10 years. This hypothesis aims to 

support the predictive purpose of the mathematical models obtained. To put it 

another way, predicting how the distribution of wealth will behave in the 

coming years is a consequence of this hypothesis.  

Figure 5 

(L) Linear models. (R) Exponential models  

 

 

In this activity, the hypotheses defined by the students guided the use 

of mathematical rules for the interpretation of the situation. From them, follows 

what Moreno (2003) identifies as linguistic appropriation , which we address 

here in relation to the linear and exponential models built, the use of the 

software , and the significance resulting from the use of the models for the 

estimates and analysis of the situation of the wealth distribution. 

 

DISCUSSION AND RESULTS  

In this article, our reflections on the developments resulting from the 

formulation of hypotheses for mathematical modelling activities take into 

account the activities developed by two groups of students and reveal an 

interpretation of elements of Wittgenstein's philosophy of language. In this 

context, mathematical modelling activities involve linguistic actions and 
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articulations related to dialogues between mathematics and the situation of 

reality. 

We can infer from the analytical effort undertaken that the hypotheses 

the students formulated, while having different origins, also have different 

purposes for the development of the activity. On the one hand, the study 

corroborates indications from the literature such as Bassanezi's (2002), which 

indicate that the hypotheses direct the investigation, and results by Almeida and 

Vertuan (2011), which indicate the need for the hypotheses as “factors that stand 

in the way to indicate directions and in which different mathematical 

resolutions are undertaken” (p. 22). Those indications could suggest that the 

formulation of hypotheses is established in the initial stages of the activity.  

On the other hand, however, the analysis undertaken in this article 

indicates that from the formulation of hypotheses the other actions of the 

students can be configured, expressing different ways of seeing the situation 

and a possible solution. These ways of seeing are not private interpretations, 

but direct students to publicise the use and application of mathematical rules 

for specific situations within each activity. In this context, the hypotheses guide 

students to express the mathematical techniques learned, as well as the rules of 

the situation they learned through the mathematical modelling of the situation. 

They differ in the nature of each context, the ‘situation investigated’ and the 

‘use of mathematics,’ as well as the linguistic relationships provided by the 

hypotheses within the mathematical modelling activities. 

In the first activity of mathematical modelling, the students' three 

hypotheses have specificities, either in their origin or the unfoldings for the 

activity to be carried out. Hypothesis 1, based on the students' knowledge about 

the situation, acts as a guide for understanding the problem. In fact, admitting 

that there is a regularity in the variation of the heart rate (H1,1) would be the 

first step to investigate how the variation of this frequency behaves. The 

formulation of H1,2 (There is a relationship between the variation of heart rate 

and the distance travelled by the runner) is based on what the students studied 

about the phenomenon, knowing that the frequency can be described directly 

considering only the distance travelled (time being an implicit variable in this 

case). Its consequence for the development of the activity would, however, be 

decisive. Not explicitly considering the time variable would bring a specific 

mathematical description, different from the one if time were also a variable 

considered in the situation.  

The third hypothesis, in turn, corresponds to a reading of the collected 

data. It indicates the referral for the construction of the mathematical model. 
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Admitting an asymptotic behaviour of the data defined the choice of the 

mathematical model to understand the variation of the heartbeat. The 

mathematical model in that case is a symbolic construction that reflects the 

relationships and characteristics considered relevant to the situation.  

The use of mathematical rules to construct models in this activity is 

based on mathematical conventions and, in this case, on a language game whose 

certainty occurs within a community. The use of mathematical rules is put by 

Wittgenstein (1996; 2013) as the use of grammatical propositions that express 

a conventional certainty. Thus, formulating hypotheses, initially based on 

empirical data, leads to grammatical research whose rules to be followed are 

mathematical certainties. The possible unfolding from the hypothesis 

formulation to the deduction of a mathematical model evidences an important 

characteristic of mathematical activity: the use of a normative, regulated 

language and, in Wittgensteinian words, 'grammatical,' which differs, for 

example, from the nature of the use of hypotheses in the natural sciences. 

The hypotheses formulated by the students are associated with the 

reading of the data collected and express a way of seeing the situation from 

their previous experiences, either with the phenomenon investigated or with the 

investigation of regularities from the data tabulation. In a classical approach to 

Wittgensteinian philosophy, ways of seeing and interpreting are subjects of 

reflection. Wittgenstein suggests that the way of seeing a figure, a triangle, for 

example, is influenced by habit and education (Wittgenstein, 2013, p. 263). 

Thus, in the academic context in which these students are, noticing the situation 

is loaded with experiences and ways of seeing that stem from this context. The 

formulation of the hypotheses in this activity is loaded with such students' 

experiences.  

The uses of language are a result of the linguistic practices experienced 

by the students in the context of a postgraduate course. The fact that a 

hypothesis indicates to students one direction or the other may be associated 

with what Wittgenstein describes as a habit of following a rule or applying a 

rule, which is not based on an interpretation, as it is not something private, but 

based on the training and instruction previously received (Wittgenstein, 2013, 

§ 201-203). In this sense, formulating hypotheses puts students in practice with 

mathematical rules previously seized, showing a path to applying the rule. The 

resulting mathematical model, however, has some degree of generality, i.e., it 

can be useful in situations beyond that for which it was built, thus fostering the 

students' experience. 
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In activity 2, which consists of the analysis of a phenomenon that 

students face through an image and magazine report, the first hypothesis H2.1 

(There is a possibility that the wealth of the richest 1% will reach the wealth of 

the other 99% of the population) formulated by the students is an interpretation 

of the data associated with the situation and, therefore, a way of seeing the 

situation of the wealth distribution. This interpretation determines how 

mathematics would be used to analyse the situation, inciting the referrals that 

should be established in the mathematisation of the situation. 

Once the students decided that a computational resource 

(GeoGebrasoftware) would be the tool to mediate the mathematisation of the 

situation, the hypotheses H2.2 (From the information in the image of figure 3 we 

will adjust to the data linear models) and H3.2 (Let us suppose an exponential 

behaviour for wealth distributions over time, from the year 2009) are 

formulated to indicate clearly which mathematics they would use to ponder the 

wealth distribution. In this sense, these two hypotheses take into account the 

behaviour of the information revealed by the image in Figure 3. These 

hypotheses, in turn, have a different purpose from the previous one and aim to 

direct the formulation of the model and the mathematical processes that should 

guide the mathematical modelling of the situation. They are structured from 

previous experiences either with mathematics or with the software used. Thus, 

although it is not possible to characterise the hypotheses as what Wittgenstein 

calls fixed certainties, they are also not formulated loosely and can be 

considered as well-founded assumptions, as suggested by Almeida (2014).  

Despite the students' mathematisation regarding the lack of equity in 

the distribution of wealth, the social and critical nature of this situation led the 

students to go beyond the first interpretation and deliberate on the predictive 

possibility of the mathematical models built. This use of the model for forecasts 

was guided by a new hypothesis, H4.2 (The behaviour of the distribution of 

wealth will not change sharply over the next 10 years). This hypothesis denotes 

the students' interest in expanding the discussion about the situation made 

possible until then. So, we can infer that this hypothesis is associated with 

students' expectations regarding the function of the mathematical model in this 

activity, as suggests the transcription of part of a dialogue between students and 

teacher during the class in which the activity was carried out (A1 and A2 are two 

students in the group and P is the teacher): 

P: But did you define this hypothesis after building the two 

mathematical models?  
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A1: Yes, teacher, I mean, we wanted to know how this situation 

would be in the future.  

A2: As we had already seen the riches of each group of the 

population, we wanted to predict how this will go on... 

P: Got it.  

An analysis of the students' formulation of hypotheses in the two 

activities allows us to consider that, while students used their experiences with 

the situation and with mathematics to formulate the hypotheses, they also 

worked as the guideline for reading or investigating this situation. Our analysis 

leads us to conclude that the developments for the modelling activity result 

from the specificities of the situation recognised by the students from their 

personal experiences and from their interest in presenting results -through the 

interlocution between situation and mathematics- for what they proposed to 

investigate in mathematical modelling. The analysis of the unfoldings that 

formulating hypotheses provided in the two activities leads us to consider that 

three categories can be characterised regarding the relevance of those 

formulations in the mathematical modelling activities, as follows.  

(1) The hypotheses are formulated from the students' way of seeing with respect 

to the situation investigated in the mathematical modelling activity, and, 

therefore, lead to a dated and dialogical solution. Thus, the hypotheses 

determine the idealised situation that the students will investigate.  

(2) The hypotheses are based on students' experiences. Based on this 

experience, students define hypotheses in relation to two aspects: (a) 

hypotheses that determine which mathematics will be useful or necessary and 

that can provide the interlocution between the situation of reality and 

mathematics through the mathematical model; (b) hypotheses that determine 

the procedures and tools internal to mathematics and that will subsidise the 

construction of the mathematical model and its validation regarding the 

situation of reality. 

(3) The hypotheses determine the students' choices in the different phases of 

the activity's development. With this function, the hypotheses guide the 

students' actions. Thus, data can be complemented, impasses related to 

mathematical procedures or the specificities of the situation are overcome, and 

partial solutions are reviewed and complemented from defined hypotheses. 

Those unfoldings are associated with the way of conducting 

mathematical modelling activities and the ways of operating with language 

within an activity in which the application of conventional rules within 

mathematics often occurs.  
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To the extent that hypotheses are formulated in mathematical modelling 

activities, they expose what students see of the situation of reality and, at the 

same time, encourage students to deepen their information status about the 

situation. In this sense, in a mathematical modelling activity, a hypothesis is not 

like an utterance that can only be proven, examined, verified indirectly through 

its consequences (Abbagnano, 2007). Nor is a modelling hypothesis a 

provisional explanation of a phenomenon that must be proven by 

experimentation (Japiassú & Marcondes, 2008). However, the hypotheses bring 

certainty in them, as Wittgenstein (2003) suggests, and this certainty is reflected 

in the results of the modelling developed.  

Thus, the nature of a hypothesis in mathematical modelling has 

characteristics of a well-founded assumption, as Almeida (2014) calls it. 

Indeed, the data indicate that, to some extent, the hypotheses determine which 

mathematics will be used and how this use  will be, as discussed in Almeida 

(2018). Above all, the modeller needs to provide information about the 

situation, about mathematics, to ensure that the mechanism of the hypothesis 

works, as Wittgenstein (2003) ponders, and the mathematical rules are used in 

line with the language game that is configured in the modelling activity. So, 

following the rules Wittgenstein (2013) refers to does not disconnect from 

mastering techniques and the use of a reference framework such as 

mathematics, to act linguistically by investigating a situation of reality.  

The validation of the results obtained by the students can also guide the 

functioning of the hypotheses, as it works as a criterion for correcting the 

techniques used within the mathematics language game. This seems to have 

been, for example, the referral of students to study the behaviour of heartbeats 

in runners submitted to the Léger and Lambert test.  

In the second activity, from formulating hypotheses and constructing 

models and their use to analyse the situation, the students could experience 

what Niss (2015) calls meta-validation associated with the prescriptive role of 

mathematical models. In the mathematical modelling in which the models 

propose to support predictions with respect to the investigated situation, we 

want "to identify possibilities of transforming the world rather than just 

understanding it" (Niss, 2015, p. 69). In the case of the activity of distribution 

of wealth, this meta-validation analysing the consequences of the results 

obtained by the model made students formulate a new hypothesis (H4.2 The 

behaviour of the distribution of wealth will not change sharply over the next 10 

years) and expand their discussion on the social and political issues immersed 

in this situation.  
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The students' meta-validation does not disqualify previous 

mathematical rules used them. Within mathematical modelling activities, the 

application of the rules occurs in a specific context of use and, in this case, the 

hypotheses play a guiding role for how the mathematical rule will be applied in 

the context. New hypotheses can lead to the use of other rules or even another 

use of the same rule.  

In other words, about the mathematisation of situations, the formulation 

of the hypotheses delimits an idealised situation, as characterised by Stillman 

et al. (2015) and Djepaxhija et al. (2015), based on the real situation, so that 

the hypotheses establish conditions so that a mathematical guise can be given 

to the situation. Thus, the hypotheses are a public interpretation of the use of 

mathematical techniques that makes sense in a given context, in line with 

Wittgenstein (2013).  

The hypotheses, in addition to a contextual demand considering the 

situation of reality and mathematics, as Galbraith and Stillmann (2001) suggest, 

also required from the students means to elucidate the interlocution they 

intended, using mathematical rules to interpret reality through mathematical 

models. However, the mathematical models thus constructed were agreed 

within the students' way of life so that one cannot decide on true mathematical 

models or false mathematical models, as Bassanezi (2002) suggests.  

This leads us to affirm that the mathematical modelling activities have 

a referral that agrees with the hypotheses on which they are based. New 

experiences of modellers can lead to new hypotheses, to new ways of seeing 

and understanding, through mathematics, a situation of reality. 

Thus, as agreed in science in general, also in the language game of 

mathematical modelling it is illogical to speak of true or false hypotheses, but 

we can speak of hypotheses as factors that indicate directions and guide the 

modeller. In this language game, the hypotheses indicate ways of seeing, 

interpreting, or pointing out intervention strategies on situations. Thus, 

“Hypothesis is a way of perceiving reality, because a new experience may 

coincide with it or not...” (Wittgenstein, 2003, p. 169).  

 

FINAL CONSIDERATIONS 

The investigation of the unfoldings for mathematical modelling 

resulting from the formulation of hypotheses was mediated by an empirical 

study in which mathematical modelling activities were developed by two 
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groups of students from two different academic modules. The analytical 

process of these activities is based -in addition to research in mathematics 

education that deals with the theme- on elements of Wittgenstein's philosophy 

of language and its repercussions on mathematics education.  

The analysis undertaken related to the mathematical modelling 

activities developed by the two groups allows us to consider that students' 

hypotheses formulation signals a way of seeing, is anchored in their 

experiences, and provides elements for subsequent actions. Thus, changes in 

the hypotheses transform the actions and the resulting conceptual construct, and 

the understanding of the situation under study. 

The Wittgensteinian perspective used in the article leads us to point out 

that the hypothesis is a way of perceiving reality and does not stabilise in a 

complete state of doubt. Thus, if in mathematical modelling activities the need 

to formulate hypotheses aims to supply some lack of information about the 

situation, it is also not free from the use of the information that the modeller 

has about the situation.  

Identifying categories in relation to the unfoldings of formulating 

hypotheses for the development of modelling activities, while elucidating the 

role that this formulation has in the development of these activities, is a result 

not yet found in the literature and can, to some extent, guide teachers when 

including modelling activities in their classes, attending to the relevance of this 

formulation.  

In the empirical research that supported this article, we considered 

different groups of students involved with mathematical modelling activities 

for different situations. In this sense, the students' experiences were also 

diverse. Future research can change this picture and obtain results on the 

influence of specific personal experiences on formulating hypotheses. 
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