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ABSTRACT 

Background: In didactics of mathematics, the problem of metadidactic 

slippage (glissement metadidactique) evidenced by Guy Brousseau has been shown for 

decades. But the school didactic practice proposes behavioural models (mathematics 

teaching-learning) from which it is manifest that the subject is completely unknown.  

Objectives: This article intends to present and discuss the metadidactic slippage 

problem and give some negative examples of its influence, in particular, about the naive 

interpretation of the so-called Pólya heuristic regarding problem solving in 

mathematics.  Design: Theoretical research in didactics of mathematics. Setting and 

participants: focuses on the school didactic practice of problem solving in 

mathematics. Data collection and analysis: Negative examples chosen from among 

those most diffused in the school world are analysed in the light of modern didactics of 

mathematics to identify metadidactic slippage in them. Results: Thanks to the slippage, 

the student learns a scheme, or an algorithm, not the desired mathematical topic T, 

which remains a mystery to the student (and sometimes also to the teacher). 

Conclusions: Before trying to “improve” the teaching-learning of mathematics with 

temporary and drastic measures, it is better, at least, to study it modestly. 
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Algunos ejemplos del fenómeno del deslizamiento metadidáctico en la 

práctica escolar 

 

RESUMEN 

Contexto: En Didáctica de la Matemática se ha demostrado durante décadas 

el problema del deslizamiento metadidáctico (glissement metadidactique) evidenciado 

por Guy Brousseau. Pero la práctica didáctica escolar propone modelos de 

comportamiento (enseñanza – aprendizaje de la Matemática) desde los cuales se 

evidencia que el tema es del todo desconocido. Objetivo: este artículo tiene la intención 

de presentar y discutir el problema del deslizamiento metadidáctico y dar algunos 

ejemplos negativos de su influencia, en particular en lo que respecta a la interpretación 

ingenua de la llamada heurística de Pólya relativa a la resolución de problemas de 

Matemática. Design: Investigación teórica en Didáctica de la Matemática. Entorno y 

participantes: se centra en la práctica didáctica escolar de la resolución de problemas 

de Matemática. Recogida y análisis de datos: Ejemplos negativos elegidos entre los 

de mayor difusión en el mundo escolar son analizados a la luz de la moderna Didáctica 

de la Matemática para poder identificar deslizamientos metadidácticos en ellos. 

Resultados: Gracias al deslizamiento, el alumno aprende un esquema, o un algoritmo, 

no el tema matemático T deseado, que sigue siendo un misterio para el alumno (y en 

ocasiones también para el profesor). Conclusiones: Antes de pretender “mejorar” la 

enseñanza – aprendizaje de la Matemática con medidas coyunturales y drásticas, es 

mejor, como mínimo, estudiarla con humildad. 

Palavras-chave: deslizamiento metadidáctico, resolución de problemas, 

heurística de Polya.  

POLYA AND TROUBLESHOOTING 

The informative, non-scientific production of the great Hungarian 

American mathematician George Polya (1887 - 1985) was developed between 

1945 and 1967. It consists of two famous books translated into several 

languages: 1. How to Solve It; 2. Mathematics of Plausible Reasoning Volume 

I: Induction and Analogy in Mathematics; Mathematics of Plausible Reasoning 

Volume II: Patterns of Plausible Reasoning. (Polya, 1945/1967, 1954). In these 

informative books, Polya illustrated and demonstrated to the public his personal 

way of facing and solving problems, a brilliant technique admired by all those 

mathematicians who have appreciated his excellent results in probability, 

number theory, combinatorial calculus and in the study of some particular series. 

Valuable, for the knowledge of Polya’s work, is his extensive and learned 

posthumous memoir written by the American mathematician Ralph Philip Boas 

(1912 - 1992), who also co-authored with Polya (Boas, 1990). 
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This type of analysis is not unique in the world of mathematics, on the 

contrary, it follows, as it were, a tradition. For example, in 1910, the French 

psychiatrist and journalist Édouard Toulouse (1865 - 1947) published a famous 

book in which he narrates the analyses he carried out at the late 19th - early 20th 

century on Henri Poincaré (1854 - 1912), one of the most brilliant mathematical 

creators of all history (Toulouse, 1910), after having observed his way of 

working for a long time and having discussed with him his work habits and his 

modes of creative thinking. From this book emerges a mathematical Poincaré - 

human being, which moves away from the stereotype of the mathematician, 

from multiple points of view (D’Amore & Sbaragli, 2020). 

Unlike what has been written about Poincaré and Hadamard, the 

narration of Polya’s methods and the public confession of how he achieved his 

results became, for some readers of the time, a kind of “general methodology 

of problem solving,” something like a “successful heuristic” that, with 

superficial considerations, was advertised as a modality to use in the classroom. 

The internal and personal “rules,” which Polya brilliantly and generously 

enumerates and describes with examples, were naively regarded as a blueprint 

worthy of being followed in the teaching process, with the conviction that 

learning would be its logical consequence. 

In those days, nobody talked about the didactics of mathematics. As a 

discipline, it had not been created yet. Guy Brousseau began to conceive it 

precisely at the end of the 60s, continuing throughout the 70s, and ending with 

the creation of a true theory of mathematics learning at the end of the 80s. 

Now, what Polya wanted to suggest to his readers was and still is very 

clear today, based on his words: to present himself as a model, since it was a 

successful model, and propose its stages as examples that anyone could follow. 

Today, although the history of those highly effective personal 

instruments, such as in Polya’s case, is considered great historical and 

psychological interest, no one would dare to believe them scientifically suitable 

for studying the didactics of mathematics with direct application in the 

classroom. Perhaps this could come to the mind of those who have not studied 

at all -or have done so poorly- the didactics of mathematics. Polya’s instruments 

are usually acclaimed or cited favourably by those who do not know what has 

happened in recent decades, thanks to the didactics of mathematics and the 

research that has been developed within them. At the cost of repeating ourselves, 

therefore, we reiterate that an eventual citation of Polya from a historical or 

perhaps psychological perspective may be interesting, but certainly not from a 

didactic point of view, as we will show in the following paragraphs. 
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Before addressing this specific argument, we must present one of the 

research issues that the didactics of mathematics discipline has faced in recent 

decades. 

 

THE (NEGATIVE) PHENOMENON OF METADIDACTIC 

SLIPPAGE 

The use in the didactic practice of heuristic systems elevated to models 

that replace the learning of mathematics with the learning of an analogy, as 

algorithmic and sequential as possible, is located in the study of a negative and 

counterproductive phenomenon evidenced by the research properly framed in 

didactics of mathematics that is included under the name of “metadidactic 

slippage.” However, the teachers themselves sometimes encourage this 

widespread and dangerous phenomenon. 

This phenomenon occurs when one goes from the study of a 

mathematics topic T, which should constitute a learning object, to the study of 

instruments that could only serve to the maximum or to illustrate the topic T or 

to face the resolution of a related problem with that topic T, as a banal scheme 

and not as true learning (which would imply, as a logical consequence, the 

correct, appropriate, and general resolution of problems related to topic T). But, 

if the slippage is successful, the student learns a scheme, or an algorithm, or a 

generalised example, not the topic T. Some teachers (when they do not know 

the results of the didactics of mathematics) confuse these two levels, accepting 

in good faith the situation that appears superficially as positive. Sometimes they 

even create it themselves and propose it in the classroom, trusting in the 

suggestions of the “experts,” and, therefore, a perfect illusion is created: 

everyone is satisfied. But the mathematical subject T remains a mystery for the 

student (and sometimes also for the teacher). 

To better understand the situation, we suggest some examples chosen 

from among those most widely used in the school world. 

1. We consider problems of this type, with a great presence in the school 

world around the world: «3 workers do a certain job in 9 hours. But if there are 

6 workers who do the same job, how many hours of work are required to do it? 

». This is a proportion with an unknown term. a: b = c: d. 

To understand and consequently consciously solve these types of 

problems, a graphical mechanism known throughout the world as the “rule of 

3” was devised a long time ago. This model transforms the arithmetic 

formulation into a graph, and this seems to make the problem solving more 
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effective. But, as has happened and happens in all countries, after a while, there 

is no further reference to either the problem or the issue of proportionality, only 

the graph is mentioned. Learning to use the rule of 3 replaces what was 

originally the true learning object: knowing and knowing how to use the 

mathematical object “proportions.” 

The student learns to handle and use this graph (with arrows that have 

concordant or discordant meanings). And even if he/she can find the result of 

that proposed problem, he/she does not learn to solve the problem or similar 

problems because he/she has not learned the idea of proportionality. He/she 

only manages to figure out the correct way to place the arrows. If he/she forgets 

the rule of 3 or if he/she makes a mistake in the placement of the arrows, he/she 

will not be able to solve these types of problems: the student does not reason, 

he/she looks for the rule, the algorithm. So much so that if the unknown term 

is not c but d, the student often does not know what to do, that is, how to place 

the arrows. 

2. Another disastrous example was verified with the arrival in the 

classrooms of naive set theory in the 70s and 80s as a consequence of an 

overestimated idea of some mathematicians of a certain prestige, with good 

intentions, but with little relation to the teaching-learning problems. After a few 

years, the representation of objects in set theory was introduced into the world 

of school, and then that is how the use of circles or ellipses was thought to 

indicate them. After a short time, the set theory study was left aside, and 

theorising about how to draw and use graphs began, transforming the entire 

learning process from the naive set theory into the mastery of this purely 

graphical, low-level activity. 

Therefore, if the students learned something, they did not learn logic as 

the basic language of mathematics, which was the initial objective, they learned 

to master the drawing of graphs. Another metadidactic slippage. Fortunately, 

the disorder that followed all this served to eliminate this useless mathematical 

content from the mathematics study programs, also thanks to the intervention 

of other mathematicians of equal prestige, such as René Thom (1970/1980, 

1973) and Morris Kline (1973) (D’Amore narrates all this in detail, 1999). 

We are sure that everyone can understand, by intuition, without having 

to study a whole… theory of circles, that: if the objects a are only a part of the 

objects of b (for example, all squares are rhombuses), then it is possible to use 

as a graphical representation a pair of circles arranged as follows (A represents 

the set of objects a, B represents the set of objects b) (Figure 1). 



 Acta Sci. (Canoas), 23(4), 1-15, Jul.-Aug. 2021 6 

Figure 1 

A represents the set of objects a, B represents the set of objects b 

 

 

This ridiculous phenomenon shows that, sometimes, to solve a 

difficulty, sometimes a little one, a cascade of pseudo-didactic procedures takes 

place that can lead to useless activities that little by little become an 

uncontrollable monster. 

3. The so-called “tests” of the results of operations, algorithmic 

mechanisms to verify the correct result of said operations. Everyone knows that 

these are useless algorithms since they guarantee absolutely nothing. For 

example, the “proof by nine” of the following multiplication: 137 × 24 = 2271, 

tells us that the result of the multiplication is correct, against all evidence. The 

only possible “test” would be to perform (correctly) the division 2271 ÷ 24 and 

thus verify that the quotient is 137, a modality that allows confirming some 

learning: multiplication and division operations are one the inverse of the other 

(Naturally, this “test” can be misleading). 

4. The technique of division between fractions. Everyone knows that to 

perform the division a / b ÷ c / d, the multiplication a / b × d / c (b, c, d ≠ 0) 

must be performed. But very seldom is the reason for this “rule” explained in 

the classroom; students and teachers take refuge in the metadidactic slide. In 

fact, the request is often explicit: “It should be done like this” or “It is enough 

to do it like this”: this is all there is to know, it is what the teacher expects of 

his students. In our experience, almost no teacher demonstrated knowing the 

answer to the spontaneous question: Why? 

5. Knowing how to add is a strong point of elementary school, but 

sometimes it becomes a plurality of algorithms with no other explanation 

beyond being an instrument and not as knowledge. Not only must the student 

learn to calculate the result of addition, for example, to be able to answer a 

problem, but he/she must do so with various algorithmic instrumental 

A 

B 
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modalities: in the column, “horizontally”, mentally, in the abacus, on the 

“number line.” 

The object of knowledge ceases to be the algorithm of addition, to 

become the learning of a set of modalities that have little to do with the 

mathematical meaning of the operation itself. And so, the meaning of 

calculating the result of an addition in the process of solving a problem is 

distorted by metadidactic slippage, and the real problem for those trying to 

solve it is knowing how to perform the addition in so many different ways. The 

student lose the sense of problem solving and transforms his/her own activity 

into algorithmic executions. 

6. If a number must be multiplied by 10 or by 100, the calculations must 

not be made, one or two zeros must be added respectively after the figure that 

occupies the units place, after the last figure. Not only is it not clear why, but it 

becomes problematic as soon as the multiplicand is not a natural number, but a 

rational number written both with the comma and as a fraction. All teachers 

know it. Knowledge becomes a pseudo-algorithmic rule whose applicability is 

not dominated by everyone. And when it also comes to the analogous rules for 

division, the negative results of these metadidactic slippages become evident to 

all teachers. 

7. A mathematical object is indicated with a symbol, it can be with a 

graph (a drawing, a diagram,...); then you stop thinking about the initial abstract 

mathematical object and everything is relegated to the graph itself. For example, 

you define a straight angle (plane). (The amplitude of an angle is seldom 

defined and is presented as intuitive. Usually, it is the angle measure and not 

the amplitude measure). Instead of clarifying what an angle is, from a 

mathematical point of view, and that the amplitude is a measure, they limit 

themselves to drawing an arc a little distant from the vertex, an arc that goes 

from one side to the other; tendingly, it is made in such a way that it is an arc 

of circumference (which is why it is called an “arc”) that has the center at the 

vertex of the angle and any measure of the radius. 

This arc sometimes indicates the angle, in others the amplitude. At this 

point, the angle object is forgotten, and the arch is studied. So much so that 

there are university students who believe that the angle is the arc and not a part 

of the plane (referring to the most recurrent definition of angle) (Sbaragli, 2005); 

and that the length of the arc measures the width of the angle, with the 

consequence that, depending on where the arc is drawn specifically, the 

measure of the width of said angle changes. In this case, metadidactic slippage 

is cognitively dangerous, but most teachers do not realise it. 
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8. The positional writing of the numerals represents a death trap for the 

mastery of cognitive aspects, especially due to metadidactic slippage. If Natalia 

owns 123 marbles, no one doubts that she has 123 units, where each unit is a 

marble. Therefore, in the numeral 123, there are 123 units. It seems obvious. 

But if Natalia (for personal reasons) decides to group the marbles into boxes in 

groups of ten by ten, she would have 12 boxes, and in each one, she would have 

a dozen marbles, plus 3 loose marbles. Now, Natalia then has 12 dozen marbles. 

Natalia decides (always for personal reasons) to group the boxes - tens in a 

larger box, collecting the tens ten by ten; she will be able to collect only 10 tens 

that she will collect in a box that obviously contains 100 marbles, that is 10 tens, 

that is one (1) hundred. [Our positional system of writing numbers is called 

decimal precisely because it is put together ten by ten to move to the top-level 

grouping: unit → tens → hundreds → thousands (units of a thousand)]. 

But 2 of these dozen boxes are left outside the large container. 

Therefore, at this point, Natalia has one (1) hundred marbles, plus 2 dozen 

marbles, plus 3 loose marbles. No one doubts that she continues to have 123 

marbles, that is, 123 units; no one doubts that she has 12 tens plus 3 loose 

marbles. It should be said that in numeral 123 the figures 3, 2, and 1 represent 

the values that appear in the unit “places”, tens, hundreds of the numeral 123: 

with greater precision 3 indicates the figure that appears in the units place, 2 

indicates the number that appears in the tens place, 1 indicates the number that 

appears in the hundreds place. It would be all very simple. 

But here, the metadidactic slippage is triggered when it is intended to 

force the student that in numeral 123 “there are”: 1 hundred (which 

coincidentally is correct) 2 tens (which is false because the tens are 12), 3 units 

(which is also false because the units are 123). The study of the mathematical 

object “positional writing” is left aside, dealing with this metadidactic slippage, 

pretending that students learn to tell a falsehood. To be sure that the error occurs 

in all cases and that it constitutes a heavy burden, colours are sometimes 

assigned to the writing of the figures in each of the positions: the units are in 

red, the tens in colour yellow and the hundreds in green (we are inventing this 

wrong and harmful chromaticism because we do not know whether there is 

already an agreement to present this nefarious activity). 

And so, the correct arithmetic meaning of the mathematical object 

“positional writing” is no longer explained, and ends up moving to a chromatic 

writing ... that forces students to use coloured pencils when they must write the 

numerals, effectively cancelling about 7000 years of history and research. The 

advantage of positional writing, one of the greatest inventions of humanity in 
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its long history, is precisely the fact that the same number, depending on the 

POSITION it has within the numeral, acquires a different value; while here all 

this is annulled shamefully, and a positional writing is not obtained but a 

CHROMATIC one. Instead of saying “decimal positional system,” it should be 

called “decimal colour system”. 

Sometimes the teacher uses the abacus; but, in the abacus, in the 123 

“writing” 123 disc-drives do not appear, in total, only six appear, but their 

arrangement (1 in the hundreds column, the third from the left; 2 in the tens 

column ; 3 in the units column), not the colours, is what determines the value. 

Thus, the abacus, when set up as a model and used correctly, contradicts the 

results of this metadidactic slippage. If the student is asked: “How many tens 

are there in 123?”, Many teachers give the wrong answer “2” instead of the 

correct answer “12.” Even comforted by the fact that the number 2 has been 

written in yellow. Which explains the negative results found in the responses to 

international evaluation tests. 

We should not consider that examples of metadidactic slippage are 

present only in elementary and middle schools. We limit ourselves to proposing 

just one among the many examples that are also found in the early years of high 

school. 

9. The so-called Ruffini rule, famous in the early years of high school 

in various countries. 

The student is studying polynomials and must know how to perform 

the easy division (2x3-3x2-5x-2) ÷ (x-2), which would lead to the quotient 2x2 

+ 3x + 1. This topic constitutes an excellent argument for mathematical 

knowledge. But, in general, he/she are not taught how to do the division, which 

among other things, is an algorithm that does not offer difficulties. On the 

contrary, he/she is taught a scheme formed by all the coefficients in play that 

are placed in a particular table and in a given order. 

Learning is no longer the division between polynomials, and it becomes 

how to organise the coefficients in this table and how to use them. It is this 

mechanism that replaces learning, the one that textbooks and teachers are 

waiting for, an evident metadidactic slippage because of which significant 

knowledge that it would be important to possess is lost. 

10. Analogous examples spread throughout the world are constituted 

by the use of specific tables to perform logarithmic calculations, today 

eliminated thanks to the widespread use of calculators and computer programs. 

Calculations were also found to show that sin (α + β) = sinα cosβ + cosα sinβ; 
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The objective of these equalities (and many similar ones) was related to the fact 

that the trigonometric tables contained the values of the trigonometric functions 

of the angles between 0 ° and 90 ° and therefore to calculate, for example, 

sin110 °, it was necessary to consider sin110 ° as sin (90 ° + 20 °). And so, 

instead of the study of trigonometry, these infernal and useless algorithmic rules 

were studied. All this ended thanks to the introduction of the calculator and 

computer programs. But, we wonder: did these instruments finally lead to the 

study of true trigonometry as a theory and not as a set of rules? 

We stop here, but we could continue with many other examples in each 

of the domains of mathematics and at all school levels. 

CONCLUSIONS 

Knowledge and know-how form a pair of metaknowledge with mutual 

reciprocal influences. Knowledge is the implicit means to activate and manage 

the know-how. Know-how is the institutional and cultural instrument that 

allows us to learn knowledge, both our own and those of others. Wanting to 

treat them in a univocal way, in particular, to think of knowledge as know-how, 

constitutes a permanent metadidactic slippage. To be effective, each knowledge 

implicit in a know-how requires new knowledge, which, once established, 

cannot be considered as such. Errors, misunderstandings, failures that repeat 

impossible demands and ineffective practices result. From an economic 

perspective, the knowledge available in the classroom is the capital and the 

interests are the know-hows acquired; the subtle and uncertain game of living, 

doubtful and fleeting knowledge with the safe and shared know-how is implicit, 

the game of the said and the unsaid. 

Before trying to “improve” it with short-term and drastic measures, it 

is better, at the very least, to study it without boasting about it. 
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