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ABSTRACT 

Background: Among the multiple phenomena reported around the teaching 
and learning of trigonometry is the exclusive use as technical tools that trigonometric 

ratios receive. This use allows and promotes the construction of limited meanings and 

the dissociation of school trigonometry from geometric notions and procedures. 

Objective: Given this problem, we studied the germinal construction of trigonometric 

notions in a historical setting to identify meaningful uses of mathematical knowledge 

to enrich those that inhabit the school and its associated meanings. Design: We 

conducted this study from socio-epistemological theory and through a particular 

configuration of content analysis. Setting and participants: Being a documentary cut 

study, we did not have participants stricto sensu. Data collection and analysis: The 

historical study focused on the mathematical preliminaries of Ptolemy’s Almagest, a 

work that the literature points out as the oldest evidence of the birth of trigonometry. 
Results: Among the results, we highlight the indirect measurement of distances as the 

use that allowed the initial construction of trigonometric notions and the synergy of 

three uses of geometric knowledge - which we call geometric work - as fundamental to 

this process. Conclusions: We conclude by stressing the importance of creating 

concrete didactic situations that explore the operation of these results in teaching 

environments and the need for historical studies around other points in the construction 

of trigonometric notions. 

Keywords: Linear and arithmetic meaning; Trigonometric meaning; Use of 

knowledge; Historical-epistemological study; Geometric work. 
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Medición Indirecta de Distancias y el Trabajo Geométrico en la Construcción de 

las Nociones Trigonométricas 

 

RESUMEN 

Contexto: Entre los múltiples fenómenos reportados alrededor de la 

enseñanza y aprendizaje de la trigonometría, se encuentra el uso exclusivo como 

herramientas técnicas que reciben las razones trigonométricas. Este uso permite y 

promueve la construcción de significados limitados y la disociación de la trigonometría 

escolar de las nociones y procedimientos geométricos. Objetivo: Ante esta 

problemática, realizamos un estudio de la construcción germinal de las nociones 

trigonométricas, en un escenario histórico, con el objetivo de identificar usos del 

conocimiento matemático que sean útiles para enriquecer los que habitan en la escuela 

y sus significados asociados. Diseño: Llevamos a cabo este estudio desde la teoría 

socioepistemológica y a través de una configuración particular del análisis de 
contenido. Entorno y participantes: Al ser un estudio de corte documental no 

contamos con participantes stricto sensu. Recopilación y análisis de datos: El estudio 

histórico se centró en los preliminares matemáticos del Almagesto de Ptolomeo, obra 

que la literatura señala como la evidencia más antigua del nacimiento de la 

trigonometría. Resultados: Dentro de los resultados destacamos a la medición indirecta 

de distancias como el uso que permitió la construcción inicial de las nociones 

trigonométricas y a la sinergia de tres usos del conocimiento geométrico - que 

denominamos trabajo geométrico - como fundamental para este proceso. 

Conclusiones: Concluimos subrayando la importancia de crear situaciones didácticas 

concretas que exploren el funcionamiento de estos resultados en entornos de enseñanza 

y la necesidad de estudios históricos alrededor de otros puntos de la construcción de las 

nociones trigonométricas. 
Palabras clave: significado lineal y aritmético; significado trigonométrico; 

uso del conocimiento; estudio histórico-epistemológico; trabajo geométrico. 

 
Medição Indireta de Distância e Trabalho Geométrico na Construção de Noções 

Trigonométricas 

 

RESUMO 

Contexto: Entre os múltiplos fenómenos relatados em torno do ensino e 

aprendizagem da trigonometria está o uso exclusivo como ferramentas técnicas que as 

razões trigonométricas recebem. Esta utilização permite e promove a construção de 

significados limitados e a dissociação da trigonometria escolar das noções e 

procedimentos geométricos. Objetivo: Face a este problema, realizamos um estudo da 

construção germinal das noções trigonométricas, num cenário histórico, com o objetivo 
de identificar utilizações dos conhecimentos matemáticos úteis para o enriquecimento 

daqueles que existem na escola e os seus significados associados. Design: Realizamos 

este estudo a partir da teoria sócio-epistemológica e através de uma configuração 
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particular de análise de conteúdos. Ambiente e participantes: Como se trata de um 

estudo documental, não tivemos participantes stricto sensu. Coleta e análise de dados: 

O estudo histórico centrou-se nas preliminares matemáticas do Almagest de Ptolomeu, 

uma obra que a literatura aponta como a mais antiga evidência do nascimento da 

trigonometria. Resultados: Dentro dos resultados, destacamos a medição indireta de 

distâncias como a utilização que permitiu a construção inicial de noções 

trigonométricas e a sinergia de três utilizações do conhecimento geométrico - a que 

chamamos trabalho geométrico - como fundamentais para este processo. Conclusões: 

Concluímos salientando a importância da criação de situações didáticas concretas que 

explorem o funcionamento destes resultados em ambientes de ensino e a necessidade 
de estudos históricos em torno de outros pontos na construção de noções 

trigonométricas. 

Palavras-chave: significado linear e aritmético; significado trigonométrico; 

uso do conhecimento; estudo histórico-epistemológico; trabalho geométrico. 

 

INTRODUCTION 

In mid-high school education, students - about 15 years old -  begin 

studying a set of different mathematical notions. Some entities with strange 

looks do not respond to the numerical-algebraic rules built throughout their 
eight or nine years of schooling trajectory: the trigonometric notions - ratio, 

function, and series (Weber, 2008). 

Given this scenario, the number of phenomena reported around the 

teaching and learning processes of those notions is not surprising. Among them: 
the undisputed introduction of the unit circle (v.g. Brito & Barbosa, 2004) and 

the transition from the degree to the radian as a unit of measure for the angle 

(v.g. Díaz, Salgado & Díaz, 2010), the non-identification of the angle as an 
argument (v.g. Thompson, 2008), the indistinction of trigonometric notions - 

ratio, function, and series - (v.g. Montiel & Buendía, 2013) and their exclusive 

use as technical tools for calculating a missing value. 

Concerning this last phenomenon focused in this study, Maldonado 

(2005) mentions that “trigonometric ratios are defined […] only to use them as 

means of a solution” (p. 15). Similarly, regarding the trigonometric function, 

the author considers that “it is used only without the need to be understood” (p. 
68). Weber (2005), Araya, Monge, and Morales (2007), and Mesa and Herbst 

(2011) share those statements. 

In this regard, Montiel and Jácome (2014) conclude that this restricted 
use limits the mathematical activity to dividing the sides of the right triangle, 

dissociating school trigonometry from geometric notions and procedures while 



 Acta Sci. (Canoas), 24(4), 81-108, Jul./Aug. 2022 84 

allowing the construction of a linear meaning, and promoting an arithmetical 

meaning for trigonometrical notions. 

The linear meaning refers to the conception and linear treatment that 
school trigonometry admits for the angle-length relationship in the triangle, the 

product of not explicitly analysing the nature of that relationship. For example, 

when Montiel and Jácome (2014) built a scale model of a problem situation to 
measure inaccessible distances, more than half of the participating teachers 

presented sketches in which steady decreases of the elevation angle coexist with 

constant growths on its adjacent side (Figure 1). 

 

Figure 1 

A proposed model that reflects a linear relationship between the elevation 

angle and its adjacent side. (Adapted from Montiel and Jácome (2014)) 

 
 

In turn, the arithmetical meaning alludes to the trigonometric notions - 

especially the ratio - as an ‘ordinary’ arithmetic process of dividing the lengths 
of the sides of the triangle, resulting from the focus of school trigonometry on 

the arithmetic domain of those notions. Thus, although Montiel and Jácome 

(2014) explicitly requested participants to build a scale model of the problem 
situation, none of their representations constituted a geometric scale model 

stricto sensu (Figure 2), as they are not proportional to reality. Instead, they 

only illustrate from where one should take the data to be replaced in the 

‘trigonometric formula’ that solves the problem. 
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Figure 2 

Proposed sketch where h1 - the height to be calculated - changes 

‘proportionally’ from one figure to another. (Adapted from Montiel and 

Jácome (2014)) 

 
 

Previous research in the discipline warns that, although the use of the 

trigonometric notions as technical tools makes them essential instruments for 
many fields of application and school spaces (Montiel, 2011), it produces 

limited and conflicting meanings. Furthermore, it does not ensure a robust 

understanding of them (Weber, 2005) nor the development of trigonometric 
thinking when handling the triangle, its elements, and the relationships between 

them (Montiel & Jácome, 2014). 

In other words, a student/teacher can achieve correct mathematical 

performance in typical school tasks related to trigonometric ratios and still 
develop the linear and arithmetic meaning associated with them, i.e., they can 

solve trigonometric exercises but not develop trigonometric thinking. Also, in 

terms of curricular transversality, we could ask ourselves what this ‘correct 
performance’ on the trigonometric ratios contributes to the understanding and 

treatment of the trigonometric function, considering that in this last notion, the 

study of its transcendent nature is essential. Are we not, from school 
mathematics itself, causing the disarticulation of both notions – trigonometric 

ratio and function – by endowing them with meanings of a different nature? 

Faced with this problem, we propose a research project whose starting 

hypothesis is that, by expanding the uses of trigonometric notions - beyond its 
use as a technical tool - and reducing the gap between geometry and school 

trigonometry, we can confront and enrich the meanings that current school 

trigonometry allows and promotes. 

Addressing this hypothesis requires, first, answering at least three 

questions: 1) What other uses of trigonometric notions are there? 2) What role 

do geometric notions and procedures play in these uses? 3) What geometric 

notions and procedures are involved? 



 Acta Sci. (Canoas), 24(4), 81-108, Jul./Aug. 2022 86 

History is a feasible scenario to answer these questions. As Gómez 

(2003) mentions, historical-epistemological studies make us aware that the 

same mathematical notion has had different meanings throughout the times. 
Moreover, it allows us to establish the constituent elements of its meanings, the 

different meanings, and their adaptation to the resolution of different situations 

and problems. 

In this paper, we give an account of a study on the germinal 

construction of trigonometric notions in a historical setting, aimed at answering 

the three questions above from the socioepistemological theory perspective and 

directing our results to epistemological contributions. 

 

THEORETICAL-METHODOLOGICAL ASPECTS 

The socioepistemological theory and the problematization of 

mathematical knowledge 

The socioepistemological theory - or socioepistemology -, developed 
within the sociocultural paradigm, departs from recognising that the 

construction and meaning of mathematical notions and procedures depend on 

their culturally, historically, and institutionally situated use (Cantoral, 2013). 

For this, the theory understands use as the ways of employing a 
mathematical notion consciously or unconsciously, implicitly - in the 

individuals’ actions - or explicitly - through school or contextual 

representations - in a specific context (Cruz-Amaya, 2019; Cabañas-Sánchez & 

Cantoral, 2012; Rotaeche, 2012). 

This stance on the construction and significance of mathematical 

notions implies, among other things, that the context determines the type of 

rationality with which an individual, collective, or historical subject builds 
knowledge (Cantoral, Montiel, & Reyes-Gasperini, 2015). This view is 

contrary to the formalist or traditional view of rationality in which “being 

rational resides solely in thinking and acting according to abstract and 
universally applicable rules, such as logical, probabilistic, mathematical rules, 

etc.” (Xiang, 2008, p. 103). 

With this in mind, socioepistemology proposes a model to theoretically 
and empirically explain the construction of a specific mathematical notion 

through its situated use, expressed through the coordination of practices of 

various kinds called  nested model of practices. 
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In the first three levels of that model - ascending reading - (Figure 3), 

convenient for empirically explaining the construction of a specific 

mathematical notion, we start from the subject’s direct actions on the 
environment, organised as socioculturally situated human activities to outline a 

socially shared practice as the subject’s deliberate iteration, and determined by 

the context (Cantoral, 2013). 

 

Figure 3 

Practice with nested model. (Adapted from Cantoral (2013)). 

 
 

Socioepistemology has adopted the problematization of knowledge as 
a research route for studying the practices that accompany the construction of 

a specific mathematical notion. This theory requires two moments: 

historization and dialectization. 

The historization of mathematical knowledge refers to the study and 

identification of those uses and meanings that are specific to the mathematical 

notion in question and that have been diluted, transformed, or lost in its 

introduction to school mathematics (Montiel & Buendía, 2012). We must 
explain that this study is not limited to the analysis of the mathematical object 

per se, but it includes - without ignoring the above - the detailed analysis of the 

sociocultural circumstances that allowed the construction of the piece of 
knowledge in question, “of the contextualised rationality with which it was 

conceived in its time and space” (Reyes-Gasperini, 2017, p. 54). 

The dialectization of mathematical knowledge, on the other hand, 

alludes to the confrontation of the uses and meanings recognised in 
historization with those who live in the school, the technical-professional 

environments, and people’s daily lives, among other spaces. 

In this sense, the problematization of knowledge, from the theoretical 
perspective adopted, is a useful theoretical-methodological tool to identify uses, 
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meanings, and other elements that allows the construction of a specific 

mathematical notion, and, based on the former, to confront and enrich the uses 

and meanings that inhabit the school, professional spaces, and others. A tool 
that allows “having the different positions and explanations in dialogue, 

signifying them based on their contexts, and understanding and studying them 

based on those contexts” (Reyes-Gasperini, 2017, p. 55). 

 

A historicization of the trigonometric notions 

To address the three starting questions, we carried out a historization of 
the trigonometric notions, i.e., we studied the sociocultural conditions in which 

trigonometric notions were initially constructed and spread, and the use - in 

terms of actions and activities - that their ‘producer’ makes of mathematical 

notions and procedures. 

This historization was done through a particular configuration of the 

content analysis,1 as a sociological tool for studying communications related to 

their conditions of production/reception (Bardin, 1996 in Cáceres, 2003), 

composed of six stages (Figure 4). 

 

Figure 4 

General scheme of the methodological elements of the study 

 
 

 
1 The complete description of the method can be consulted in Cruz-Márquez (2018, 

pp. 54-64). 
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The object of analysis is the selected work in which we recognised the 

birth of trigonometric notions. During this stage, we chose chapter IX of book 

I of Ptolemy’s Almagest as our object of analysis, given that literature usually 
agrees that the ‘trigonometric table’ constructed in that section is the oldest 

human communication that gives evidence of the birth of trigonometry. We 

understand trigonometry here as the systematic and quantitative study of the 

relationships established between an angle and the distances it subtends. 

The source collection, in turn, refers to the search and organisation of 

works associated with the selected object of analysis. We classified the sources 
gathered during this stage into four types: 1) studies on the history of science 

and mathematics in general, where we placed, for example, Science Awakening 

II (van der Waerden, 1974); 2) modern versions of the Almagest, for example, 

Ptolemy’s Almagest (Toomer, 1984); 3) analysis of the Almagest, e.g., A Survey 
of the Almagest (Pedersen, 2010); and 4) annotated translations of Ptolemy’s 

masterpiece, among which the Chapter IX of Book I of the Almagest by 

Claudius Ptolemy (Saiz, 2003). 

The data pre-analysis, the third stage of our content analysis, refers to 

the initial study of the sources collected to discriminate those that will 

constitute our data. During this stage, we made comprehensive readings of the 
sources, selected documents or sections of documents that we considered could 

help answer our initial questions, and translated and transcribed some of them, 

intending to make their analysis easier and more efficient. 

The data analysis refers to the study - based on the theoretical elements 
- of the previously selected and processed data and to the establishment of 

causalities, correspondences, and links between them. In correspondence with 

our theoretical position, we carried out this stage in two phases: contextual 

analysis and textual analysis. 

For the contextual analysis, we took as a starting point the 

methodological proposal by Espinoza-Ramírez and Cantoral (2010), which 

maintains that to approach the sociocultural meaning of a work, it must be seen 
from at least three perspectives: as a production with history, as an object of 

diffusion, and as part of a global intellectual expression. In this sense, the 

following questions became paramount in our study: Who was Claudius 
Ptolemy? What social, political and/or economic events determined the 

publication and dissemination of the Almagest? What relationship does the 

Almagest keep with other relevant mathematical or didactic works at the time? 

(Cruz-Márquez & Montiel, 2017). 
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Regarding the textual analysis, thanks to what is reported in the 

literature and a previous study carried out on Euclid’s Elements, in chapter IX 

of book I of Ptolemy’s Almagest we could identify discursive units as portions 
of text with a similar grammar and function (Figure 5), and units of analysis or 

propositions as sections of the text with a similar composition and with a 

specific objective (Cruz-Márquez & Montiel, 2017) (Figure 6). 

 

Figure 5 

Discursive structure of the first proposition (PP1) 

 
 

Figure 6 

Propositions identified in Chapter IX of Ptolemy’s Almagest. (Adapted from 

Cruz-Márquez (2018, p. 112)). 

 
 

With this in mind, we began the textual analysis of the Almagest by 

studying in detail the discursive structure of the recognised propositions and 
carrying out each of the geometric constructions and mathematical proofs 

involved in them - a stage we called microanalysis - to identify the actions - in 

the sense of the practice nested model - that the author carried out directly on 
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the objects and the useful tools. As the core of this first level of textual analysis, 

we ask: What does he [Ptolemy] do? How does he do it? 

In the second level of analysis - which we called mesoanalysis -, we 
studied the objective of each of the identified propositions. By this, we derived 

relationships between propositions and possible activities  - in the sense of the 

practice nested model. As the core of this second level of analysis, we ask: Why 

does he do it? 

Finally, in the third level of analysis - called macroanalysis -, we 

articulated the specific objectives of each proposal and the links between them, 

to approach the objective of the document and answer our initial questions. 

The interpretation and inference, the fifth stage of our content analysis, 

refers to the approach of answers to our starting questions based on the data 

collected, selected and analysed in the previous stages. 

The conclusion, on the other hand, refers to the process of synthesis, 

writing, and final presentation of the results. 

 

RESULTS 

In correspondence with the implemented methodological tool, we 

present the results of the historization carried out in three large sections: 

contextual analysis, textual analysis, and a synthesis of the main results. 

 

Contextual analysis of the Almagest 

As a result of this first phase of analysis, we identified the problems 

faced by Ptolemy’s contemporary astronomers and the conditions in which they 

did so. The results are described below. 

 

About the context 

We recognised the conditions in which Ptolemy’s masterpiece was 

produced and disseminated as a plot of three components: the sociocultural 

context, the scientific context, and the tacit context. 

The sociocultural context refers to events of a social and cultural nature 

that played a transcendental role in Ptolemy’s life, education, and work. Among 
them, we highlight the development of ancient civilisations -Egyptian and 
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Mesopotamian -, the advantageous geographical location (Boyer, 1986) and 

ingenuity of the Greek people (Mateu & Orts, 2006), the foundation and 

economic and cultural power of Alexandria (Kline, 1972), the creation and rise 
of its Museum and Library (Melogno, Rodríguez & Fernández, 2011), and the 

concurrence of Ptolemy and his direct scientific predecessors - Euclid, 

Apollonius and Hipparchus - in the city (Boyer, 1986). 

On the other hand, the scientific context alludes to the advances and 

events that shape the mathematical and astronomical environment in which 

Ptolemy created and spread his work. For example, the use of astronomy to 
anticipate terrestrial phenomena (van der Waerden, 1974), the astronomical 

observations by ancient civilisations, the Mesopotamian number system and 

calculation methods (Aaboe, 1964), the identification of incommensurability 

and the consequent rise of Greek deductive geometry (Sánchez, 2012), the 
composition of Euclid’s Elements (Euclides, 1991; Boyer, 1986), the 

emergence of the angle as a quantification of the amplitude (Matos, 1990), the 

epicycle and eccentric theories of Apollonius (Boyer, 1986), and all the 

scientific production of Hipparchus (Maor, 1998). 

Given the above, we considered that three tools were essential for 

Ptolemy’s work: the Greek deductive axiomatic geometry - gathered in Euclid’s 
Elements -, the arithmetic-algebraic advances of the Mesopotamian 

civilisations, and a quantitative notion of the angle. 

Greek deductive axiomatic geometry, specifically Euclid’s outstanding 

work, provided Ptolemy with a fairly rich accumulation of tools for geometric 
construction and mathematical proof. In addition, the Elements endow all 

scientific works after its publication with a particular language and rationality, 

and Ptolemy’s Almagest is a clear example of that. For example, in the studied 
chapter alone, we identified the recurrent use of at least 20 propositions of 

Euclid’s work, coming from books I, II, III, IV, VI and XIII. 

Within the Mesopotamian arithmetic-algebraic contributions, it is 

worth highlighting its number system, which, sexagesimal and positional, had 
vast advantages over contemporary Greek and Egyptian systems, especially 

when working with large numbers and fractions. Moreover, the calculation 

methods of the Mesopotamian civilisations, such as linear interpolation and 
root approximation, were decisive for the astonishing degree of precision 

observed in the trigonometric table built by Ptolemy, up to seven decimal 

places, compared to the current calculation (Bressoud, 2010). 
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The quantitative notion of the angle, specified in the division of the 

circumference of the circle into 360 parts, each one subsequently divided into 

60 smaller parts, which Greek mathematics built based on Mesopotamian 
astronomy and mathematics and which, in Ptolemy’s times, was already in 

standard use, was an essential element for the astronomer’s purposes, as it 

served as the reference unit based on which he expressed and operated the 

central angles and arcs of circumference. 

Lastly, the tacit context refers to the articulated set of beliefs about the 

structure, composition, and functioning of the universe that prevailed in 
Ptolemy’s time, currently called Aristotelian worldview of the universe 

(DeWitt, 2010) (Figure 7). 

 

Figure 7 

Scheme of the universe according to the Aristotelian worldview. (Adapted 

from Apian, Bellere and Gemma (1545, p. 6.)) 

 
 

Under that view, the universe is finite and spherical, and the Earth is a 

static and floating body in the void - beliefs from the Milesians’ models 

(Asimov, 1975). In turn, the heavenly bodies are supposed to be spherical with 
uniform circular movements around the centre of the universe, where the Earth 

is located - beliefs suggested by the Pythagoreans (Boyer, 1986) and supported 

by the Platonic school (Saiz, 2003). 

An important observation about those contexts is that, although 
separately exposing them helped give clarity and linearity to history, they are 
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not independent; on the contrary, they intersect - oppose and favour - constantly 

and, as a whole, they shaped the conditions that made Ptolemy’s work possible 

and fostered the emergence of trigonometric notions in his work. 

About the problem 

In the middle of the 2nd century BC, under the sociocultural, scientific, 

and tacit conditions mentioned, Hipparchus of Nicaea - Ptolemy’s 
contemporary astronomer - observed that the celestial models built under the 

Aristotelian worldview of the universe could not explain the seasons of the year. 

In other words, if we consider the Sun as a body that moves in a uniform circular 
manner around the centre of the universe, where the Earth is located as a static 

entity (Figure 8a), the distance, size, and apparent brightness of the Sun should 

be similar throughout the year, which is not what we observe. 

 

Figure 8 

Uneven seasons problem. (Figure 8b adapted from Bressoud (2010)). 

 
 

Consequently, Hipparchus proposed that, to match the model with the 

empirical facts, the Earth should not be located precisely in the centre of the 

ecliptic (Figure 8b). The consequent question is: How far from the centre is our 

planet located? 

To address this issue, Hipparchus divided the ecliptic using empirical 

measurements of the length of the seasons of the year. Thus, if the distance 

between the spring equinox (P) and the autumn equinox (O) is 187 days out of 
the 365¼ of the year, then the arc PVO corresponds to 184.31º of the 360º into 
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which the circle is divided. Consequently, the arc OO’ equals 4.31º. Similarly, 

Hipparchus calculated that the arc VV’ corresponds to 1.98º. 

At this point, to calculate the distance between the Earth and the centre 
of the ecliptic through what is now called the Pythagorean theorem, Hipparchus 

only had to know the length of the chords subtended by the arcs OO’ and VV’. 

However, he did not have a useful mathematical instrument to measure 
distances indirectly in the context of the circle, i.e., a tool that would 

quantitatively and systematically associate the arcs - or central angles - with 

their respective chords and vice versa. So, Hipparchus undertook the task of 
building it. This instrument became the first ‘trigonometric table’ that we know 

about, which made him creditor of the title of the father of trigonometry. 

This table, like most of Hipparchus’s works, has not come down to us, 

but we know about it thanks to the works of his successors, especially Claudius 
Ptolemy, who, in chapter IX of book I of the Almagest, our object of analysis, 

built a homologous table. 

 

Textual analysis of Almagest 

This second phase of analysis allowed us to identify three blocks of 

propositions or moments of work and three uses that Ptolemy gave to geometric 
notions in the course of his work. Next, we expand on those results and show 

examples of the micro2 and mesoanalysis done around some propositions and 

blocks. 

 

On the blocks of proposals or moments of work 

To fulfil his objective of building a table that associated the angles 

between 0.5º and 180º, with an intermediate of half a degree, with their 
respective chords, Ptolemy required three blocks of propositions or moments 

of work, as a set of propositions with similar objectives: the first chords, the 

geometric methods, and the ‘even’ chords (Figure 9). 

 

 
2 The complete analysis of the geometric constructions and the mathematical proofs 

of each of the propositions can be consulted in Cruz-Márquez (2018, pp. 107-152). 



 Acta Sci. (Canoas), 24(4), 81-108, Jul./Aug. 2022 96 

Figure 9 

Blocks of identified propositions 

 
 

In the first chords, Ptolemy identified the first six angle-chord pairs in 
his table: the chords subtended by arcs - central angles - of 180º, 120º, 90º, 72º, 

60º, and 36º. As an example, in the first proposition (PP1), to [what does he 

do?]3 calculate the chord subtended by a central angle of 90º, the author [how 
does he do it?] declared some basic geometric elements: a circumference 

divided into 360 parts and its diameter divided into 120 (Figure 10), each of 

them, then, divided into 60 smaller parts – a division that he used throughout 

the entire chapter. After that, he built the radius of the circle perpendicular to 
its diameter (BD) and drew the chord AB. Finally, with the help of what is now 

called the Pythagorean theorem, he calculated the length of the segment AB. 

Although the angle-chord pairs built by Ptolemy in this first moment 
of work were quite well-known at the time  - some of them were even part of 

Euclid’s Elements (Bressoud, 2010) -, the objective [why does he do it?]  was 

that it served as raw material for later moments. 

In the geometric methods, second block or moment of work, Ptolemy 
took on the task of expanding the previously constructed angle-chord pairs. To 

do this, he proposed, tested, and made use of four geometric methods that 

constitute a bridge between the six pairs he already knew and those he required 

to complete his table. 

 

 
3 In this section we use square brackets to indicate “who does it, how he does it, and 

why he does it for” in the different propositions and blocks, with the intention of 

reflecting its role in their analysis. 
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Figure 10 

First chords. (Left: adapted from Saiz (2003, Appendix). Right: digitally 

designed according to the first, with dashed lines added, as necessary to build 

the solid figure, according to the proposals of Euclid’s Elements). 

 
 

For example, in the second proposition (PP2), Ptolemy [what does he 

do?] constructed and used his first geometric method, which allowed him to 
calculate the chord subtended by the central angle that is the supplement of a 

central angle whose chord is known. For that, the author [how does he do it?] 

started from a semicircle and its diameter, divided as explained before, to which 
he added a chord whose central angle he knew - 36º in the case he illustrated 

(Figure 11). 

 

Figure 11 

First geometric method. (Left: adapted from Saiz (2003, Appendix). Right: 

digitally designed according to the first). 

 
 

Subsequently, Ptolemy constructed the chord that joins the remaining 

end of the diameter and the end of the first chord, i.e., the chord subtended by 
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the central angle that is the supplement of the first angle - 144º in the illustrated 

case. Finally, the author used what today we call Thales’ theorem and 

Pythagoras’ theorem to establish a relationship between the lengths he knew - 
the diameter of the semicircle and the first constructed chord - and the length 

he intended to find out –the chord subtended by the central angle of 144º. 

The importance [why does he do it?] of the methods constructed by 
Ptolemy during this second period of work lies not only in the number of angle-

chord pairs that can be added to his table - somewhat over 120 -, but also in the 

fact that they represent the first systematic means to quantitatively describe the 
existing relation between the central angles and corresponding chords of which 

we have evidence, which constitutes the birth of trigonometry - in the sense we 

mentioned before. 

In the ‘even’ chords and the third and last block or identified moment 
of work, Ptolemy took the task of [what does he do?] approximating the chord 

subtended by a central angle of 1º and 0.5º. For that, the author [how does he 

do it?] proved that ‘the ratio between the major chord and the minor chord in a 
circle is less than the ratio of their respective arcs’. In addition to [what does he 

do it for?] serving as a geometric foundation to approximate the desired chords, 

it is clear evidence of the author’s full awareness of the non-proportional nature 
of the relationship between the arcs - central angles - and the chords they 

subtend. 

 

On the uses of geometric notions 

Finally, transversally to the propositions and moments of work cited 

above, Ptolemy used geometric notions and procedures, especially 

proportionality, the circle and the right triangle  - their elements, relations and 
properties -, in at least three ways: as tools of construction, as theoretical tools, 

and as arithmetic-algebraic tools. 

The use of geometric notions and procedures as construction tools 

refers to when Ptolemy declared and/or added the geometric objects that were 
going to intervene in a proposition; the use as theoretical tools, to when the 

astronomer formulated and proved the geometric relations between the objects 

declared and constructed above; and the use as arithmetic-algebraic tools refers 
to when the author used arithmetical and/or algebraic implications of the 

geometric relationships constructed to add new angle-chord pairs to his table. 
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As an example, in the fourth proposition (PP4), Ptolemy focused on 

[what does he do?] constructing a geometric method that allowed him to 

calculate the chord subtended by the angle that was the difference between two 
angles whose chords he knew. For that, the author [how does he do it?] 

introduced some geometric elements: a semicircle - divided as explained before 

- and two chords whose associated central angles are known (AB and AC), both 
with an endpoint in the diameter (Figure 12a). Up to this point, the author used 

geometric notions as construction tools. 

 

Figure 12 

Uses of geometric notions. (Adapted Saiz (2003, Appendix)). 

 
 

Subsequently, Ptolemy argued that the chords subtended by the 

supplement angles of the first two (BD and CD) were also known, by the second 
proposition (PP2) described above. In addition, he used the fact that the 

quadrilateral ABCD was inscribed in the semicircle and that its two diagonals 

(BD and AC) and three of its sides (AB, AD, and DC) were known to ensure, 

by means of what is now called Ptolemy’s theorem, that ‘it is evident that if two 
arcs and the lines they subtend are given, the line subtended by the difference 

between those two arcs will also be given’ (Figure 12b). In this section, we 

locate the use of geometric notions as theoretical tools. 
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Finally, the author used the arithmetic-algebraic interpretation of the 

relationship he built to calculate, among many others, the length of the chord 

subtended by a central angle of 12º - based on the chords of 60º and 72º -, 
hitherto unknown (Figure 12c). Here we place the use of geometric notions as 

arithmetic-algebraic tools. 

The synergy of those three uses that Ptolemy gave to geometric notions 

in his work is what - for study purposes - we call geometric work. 

 

A necessary summing-up 

As a result of establishing a relationship between natural terrestrial and 

astronomical phenomena, the ancient Western civilisations saw the need to 

observe and register celestial phenomena and - later on - compose systems that 

would explain and anticipate them. A consequence of the desire to build those 
systems, within the framework of the Aristotelian worldview of the universe, is 

that the Greek astronomers had to indirectly measure distances in the context 

of the circle. This was a task that - as we have seen - made necessary the 
construction of a systematic and quantitative explanation of the relationship 

between a central angle and the lengths it subtended, i.e., the construction of 

the first relationship of a trigonometric nature. 

To address this problem, Ptolemy inherited at least three fundamental 

tools: the Greek deductive axiomatic geometry, the arithmetic-algebraic 

advances of the Mesopotamian civilisations, and a quantitative notion of the 

angle. The first helped compose and justify geometric models that embodied 
the beliefs articulated under the Aristotelian worldview of the universe. The 

second and third were essential for adjusting those models to the more than four 

thousand years of empirical data. 

Thus, when constructing his trigonometric table, Ptolemy took notions 

such as proportionality, the circle and the right triangle - their elements, 

properties and relationships -, and used them to introduce and build geometric 

objects, to establish some properties and relationships between them, and to 
calculate the desired angle-chord pairs. In other words, to fulfil his objective, 

Ptolemy used geometric work as a synergy of uses as construction tools, 

theoretical tools, and arithmetic-algebraic tools on the mathematical notions we 

mentioned. 

Finally, it is essential to underline the role played by the sociocultural 

conditions for establishing an at least favourable atmosphere for the 
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mathematical and astronomical production of Ptolemy’s times, for the structure 

and composition of the Almagest, and – ultimately - for the construction of 

trigonometric notions. 

 

DISCUSSION AND CONCLUSIONS 

The most significant results and contributions of this study – a 

consequence of the questions posed - are related to the initial use of 

trigonometric notions and the role that geometric notions and procedures play 

in it. Consequently, the first point of discussion is about what our historical 
analysis points out as the germinal use of trigonometric notions: the indirect 

measurement of distances in the context of a circle. 

Reviewing study plans and programmes, textbooks, and trigonometry 
classes would make us think that the indirect measurement of distances 

occupies an important place in school trigonometry. However, research such as 

Montiel’s (2014) shows that in the usual trigonometric tasks (Figure 13a) and 
the so-called ‘application problems’ (Figure 13b), the students are not required 

to carry out or analyse geometric constructions - given that they, as well as their 

proportionality, constitute starting conditions–, that obtain measurements or 

data or obtain the solution by another means. 

 

Figure 13 

Usual trigonometric homework and application problem. (Adapted from 

Montiel (2014)). 

 
 

This type of mathematical activity restricts the students’ work to 

choosing the appropriate ‘trigonometric formula’, substituting the given values, 

and performing the relevant arithmetic procedures to calculate the data that 
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solves the problem (Brito & Barbosa, 2004; Weber, 2005; Díaz, Salgado & 

Díaz, 2010; Mesa & Herbst, 2011; and Montiel, 2014). 

Consequently, we consider that, usually, in current school 
trigonometry, the indirect measurement of distances constitutes a fictitious 

scenario of application of definitions and formulas, instead of a context of use 

and meaning of trigonometric notions that favours their construction and the 

study of the proper nature of the angle-length relationship. 

The second point of discussion is the role of geometry in the 

construction and significance of trigonometric notions. Although several 
studies (e.g. Patricio, García, & Arrieta, 2005; Navarro & Villalva, 2009; 

Jácome, 2011; and Montiel, 2014) agree on the usefulness and relevance of 

bringing geometric notions and procedures closer to the introduction and 

development of the trigonometric notions, questions about how to do it and 
what geometric notions and procedures are relevant to this process are areas of 

real debate. As an example, we briefly comment on the proposals by Bressoud 

(2010) and Weber (2005, 2008). 

In the first, the author proposes introducing trigonometry from the 

‘circle model’, based on historical considerations related to the trigonometric 

problems solved in the works of Euclid, Hipparchus, and Ptolemy, given that 
they precede the trigonometric ratios in the right triangle. However, his 

contribution does not include a didactic reflection on how those problems 

would live in class, given their complexity. Moreover, and regarding the recent 

contribution of Mandsfield and Wildberger (2017), today we accept that the 
Plimpton 322 tablet –dated a millennium before Hipparchus– contains exact 

trigonometric calculations based on ratios in the right triangle. Although such 

calculations come from a different epistemology than the one that gives rise to 
the current calculation of trigonometric ratios, and a deep analysis is required 

to recognise the relevance of any of those models in a didactic scenario, it is 

obvious that the chronological argument is not enough to decide which should 

be brought to the classroom. 

In the second proposal, the author presents and puts into practice an 

experimental method of introducing trigonometric functions to study their 

understanding by higher education students in the USA school system. This 
method is based on the idea that trigonometric operations can be understood as 

‘geometric processes’. 

Specifically, the geometrical process he proposes to calculate the sine 
of a given angle is to construct a unit circle in a Cartesian plane and use a 
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protractor to draw a ray from the origin of that plane - so that the angle between 

the positive part of the x-axis and the ray is the desired angle -, locate the point 

of intersection between the ray and the unit circle, and determine the ordinate 

or height of that intersection (Weber, 2008). 

Although this proposal brings into play some geometric elements, we 

believe they constitute mainly a method of introducing the unit circle and a 
means to ‘geometrically justify’ a metric or numerical procedure for the 

calculus of basic trigonometric ratios. Moreover, although it promotes the 

analysis of the angle-trigonometric function relationship and its properties, it 
does not explicitly delve into the transcendental –trigonometric– nature of that 

relationship. 

Concluding, in light of the background and results presented, we affirm 

that when introduced into the school environment, the trigonometric notions 
lost their germinal functionality and their intrinsic nature, the trigonometric 

element that characterises them, and became a field for memorising and 

applying definitions and formulas, and space for exercising proportionality. 

As an alternative - and answer to the starting questions -, we propose 

that the indirect measurement of distances in the context of the circle constitutes 

a favourable scenario for the analysis of the nature of the angle-length 
relationship and, consequently, to confront and expand the linear and arithmetic 

meaning associated with the trigonometric notions. We also postulate that the 

geometric work - the synergy of uses as construction tools, theoretical tools, 

and arithmetic-algebraic tools - on geometric notions such as proportionality, 
the circle and the right triangle - their elements, properties, and relationships - 

is essential in this process. 

For future studies, we expect to create a specific didactic situation 
under those epistemological assumptions, subjected to empirical tests, besides 

studies around other historical points regarding the construction of 

trigonometric notions and their introduction and evolution within educational 

systems... but that will be a new story. 
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