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ABSTRACT 

Background: Mathematical tasks for university teaching are generally of 

great cognitive demand, without thinking about the limitations they imply for their 

students. Objectives: To develop a theoretical analysis of the teaching limitations and 

cognitive demand of four tasks proposed for teaching calculus, specifically, the 

Fundamental Theorem of Calculus. Design: Qualitative paradigm, with a descriptive-

interpretive approach, according to the nature of the data collected. Setting and 

Participants: The study is framed in a Colombian University, in the subject “Calculus 

II” for second-semester engineering students, where a professor designs the tasks to be 

implemented in this course. Data collection and analysis: The data correspond to the 

professor's lesson plans the statements of the main mathematical tasks within them. 

These plans were chosen based on availability and accessibility. A content analysis was 

conducted, considering as units of analysis the paragraphs or sets of paragraphs of the 

statement of each school mathematics task. Results: Most of the proposed tasks 

correspond to high cognitive demand (procedures with connections and mathematical 

construction) and only one was of low demand (memorisation). Moreover, each of the 

tasks presents its own cognitive demand and several learning constraints that, some of 

them, agree with the exposed literature. Conclusions: The work aims to have 

implications for higher education, since to think of a didactic proposal for a better 

approach to teaching is necessary to configure lesson plans that mobilise the learning 

of mathematics in engineering, but from the use of tasks with different cognitive 

demands, in which will vary from less to more, and lead to meaningful learning for the 

approach of new tasks. 

Keywords: Cognitive demand; Mathematical tasks; Fundamental theorem of 

calculus; Integrals; Derivatives. 
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Teorema fundamental do cálculo: exigência cognitiva e limitações na 

aprendizagem das tarefas matemáticas 

 

RESUMO 

Contexto: as tarefas matemáticas para o ensino universitário são geralmente 

de grande exigência cognitiva, sem pensar nas limitações que implicam para os seus 

alunos. Objetivos: desenvolver uma análise teórica das limitações do ensino e da 

exigência cognitiva de quatro tarefas propostas para o ensino do cálculo, 

especificamente, o Teorema Fundamental do Cálculo. Design: do paradigma 

qualitativo, com uma abordagem descritiva-interpretativa, de acordo com a natureza 

dos dados recolhidos. Ambiente e participantes: o estudo é enquadrado numa 

Universidade Colombiana, na disciplina “Cálculo II” para estudantes de engenharia do 

segundo semestre, onde um professor concebe as tarefas a serem implementadas neste 

curso. Coleta e análise de dados: os dados correspondem aos planos de aula do 

professor, em particular, as declarações das principais tarefas matemáticas dentro deles. 

Estes planos foram escolhidos com base na disponibilidade e acessibilidade. Foi 

realizada uma análise de conteúdo, considerando como unidades de análise os 

parágrafos ou conjuntos de parágrafos da declaração de cada tarefa de matemática 

escolar. Resultados: A maioria das tarefas propostas corresponde a uma elevada 

procura cognitiva (procedimentos com ligações e construção matemática) e apenas uma 

foi de baixa procura (memorização). Além disso, cada uma das tarefas apresenta a sua 

exigência cognitiva e várias restrições de aprendizagem que, algumas delas, concordam 

com a literatura exposta. Conclusões: O trabalho pretende ter implicações no ensino 

superior, uma vez que para pensar numa proposta didática para uma melhor abordagem 

do ensino é necessário configurar planos de aula que mobilizem a aprendizagem da 

matemática na engenharia, mas a partir da utilização de tarefas com diferentes 

exigências cognitivas, nas quais variará de menos a mais, e conduzirá a uma 

aprendizagem significativa para a abordagem de novas tarefas. 

Palavras-chave: Demanda cognitiva; tarefas matemáticas; teorema 

fundamental do cálculo; integrais; derivadas. 

 

INTRODUCTION 

Teachers at different educational levels express concern about 

identifying and proposing mathematical tasks for teaching that are not of the 

same level of cognitive demand or its edges. Itzcovich (2005), Ruiz-Olarría 

(2015) and Valer (2017) state that the faculties’ class plans we see at university 

include mathematical tasks levelled with the cognitive demand, which do not 

claim a variability in the development of mathematical thinking for the 

knowledge of the topics or the development of mental flexibility. Thus, they 

are used to exemplify the typical errors and difficulties in explanations or 

exercises. This causes the typification of styles of teaching mathematics that 
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does not specify in didactics the contents or procedures to be taught, “but rather 

how professors prefer to teach and what are their typical or predominantly used 

procedures in the act of teaching” (Ventura, 2013, p. 11).  

Consequently, we observe a style of mathematics teaching marked in 

practices that reveal static levels, focused on practices whose decisions and 

teaching actions correspond to other epistemological models used throughout 

history (Gascón, 2001) and influence the didactic apparatus of the construction 

of teaching proposals at the elementary and high school levels, where there is 

greater diversity in the use of tasks of different cognitive levels (Cárdenas, & 

Blanco, 2016; López, 2013). First, however, it is worth asking: What happens 

in higher education? Studies support that this school level is marked by 

teaching styles focused on a high level of demand for the development of tasks, 

where the proposed activities tend to require from students a high cognitive 

demand (Kessler, Stein, & Schunn, 2015; Planas, 2004; Smith & Stein, 1998; 

Ursini, & Trigueros, 2006).  

Considering that achieving teaching objectives entails implementing 

mathematical tasks of different cognitive levels (Smith & Stein, 2016), it is 

necessary to identify other elements that project a type of university teaching 

that considers those levels of cognitive demand in the mathematical tasks 

proposed in the higher education classroom, in order to support the regulated 

learning of their students (De la Fuente-Arias et al., 2008; García & Benítez, 

2013; Penalva, Posadas, & Roig, 2010), and not to repeatedly frustrate the 

approaches of university students towards the knowledge of the theoretical 

bases, especially in the training of engineers (Álvarez, & Ruíz-Soler, 2010; 

Cortés, Arellano, & Vázquez, 2019; García Retana, 2013).  

In this regard, Acero (2019) studies the cognitive demand in university 

texts related to linear algebra, concluding that four of the five texts studied 

exceed the average regarding high cognitive demand activities. On the other 

hand, the fifth book is below average in all components of high cognitive 

demand that they define, except for algorithmic calculation. This conclusion 

clarifies that, at the university level, high cognitive demand activities seem 

prioritised over others. 

On the other hand, García and Benítez (2013) present a proposal to 

carry out the assignment of tasks that support mathematics learning in first-year 

university students. Their results show that students’ learning is favoured when 

there is congruence between the cognitive demand of the tasks, the 

mathematical content of the problems and the curricular objectives. 
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In turn, Penalva, Posadas, and Roig (2010) characterised the problem-

setting activity in the probability domain by university students based on the 

cognitive demand put into play. In their findings, they affirm that, based on the 

comparative analysis of the characteristics of the mathematical activity of 

groups of students who have raised problems with a high level of cognitive 

demand and those who have done so with a low level of demand, it was not 

possible to establish a relationship between the type of approach the students 

used and the way they solved problems as a group with the concepts dealt. Even 

so, the authors consider that providing a proper balance between tasks of 

problem setting and problem solving has a positive effect on mathematics 

teaching at the university level. 

A relevant topic in the teaching of integral calculus is the relationship 

between the antiderivative and the defined integral within the fundamental 

theorem of calculus (FTC), in which conceptual elements of differential 

calculus and the bases of integral calculus converge (Larson & Edwards, 2016). 

Therefore, to interpret them, students must know the basic concepts of FTC 

(Larson & Edwards, 2016), such as: continuous functions, derivation and its 

properties, antiderivative, and calculations with antiderivatives. This variety of 

elements to consider in its treatment can generate a presentation of the topic 

based on high cognitive demand, leaving aside proposals with different 

cognitive levels, which becomes relevant when it comes to achieving teaching 

objectives (Smith & Stein, 2016). 

Given the above, this article aims to develop a theoretical analysis of 

the cognitive requirement of four tasks proposed for the teaching of FTC and 

its limitations for learning (errors, difficulties, and obstacles). To this end, we 

intend to answer the questions: What levels of cognitive requirement are put 

into play from the task statements for the teaching of FTC? What learning 

limitations does the FTC teaching presuppose from the mathematical tasks 

statement?  

 

THEORETICAL FRAMEWORK 

Our theoretical frame of reference is based on three constructs: the 

notion of school math work, the notion of cognitive demand for it, and the 

notion of learning limitations. In addition, we will delve into the FTC in order 

to have theoretical references on its applicability.  

We will understand the notion of school math tasks as the one proposed 

for the student that implies his/her action (an activity) when facing mathematics 
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and that the teacher plans as an instrument for learning or learning evaluation 

(Moreno & Ramírez-Uclés, 2016). These can be analysed from different 

perspectives, one of which is presented by Ramos-Rodríguez, Valenzuela, and 

Flores (2019) from the student-teacher-content triad involved in the model 

illustrated in Figure 1. The model proposes a way to approach school math tasks 

considering the analysis and discussion stimulated by their primary and 

secondary descriptors. Primary descriptors have to do with what is observed at 

first sight in school math tasks, specifically, their purpose and the mathematical 

content put into play in their development.  

 

Figure 1 

Characterisation of school math work. (Ramos-Rodríguez, 

Valenzuela, and Flores, 2019) 

 

 

Secondary descriptors require a deeper analysis of the task, i.e.: i) 

studying the coherence between the task statement instruction and the task 

purpose, ii) investigating the learning limitations (errors, difficulties, and 

obstacles) and iii) analysing the cognitive demand that the task involves (Smith, 

& Stein, 2016) and that must be considered in its implementation.  

Learning limitations refer to the possible errors, difficulties, and 

obstacles that arise during mathematics teaching and learning. These 
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mathematical tasks involve mathematical modelling, problem solving, and 

other issues related to reading comprehension and appropriation of symbolic 

language, low appropriation of previous concepts such as function mastery 

(Gallardo & Galindo, 2015; Guzmán & Vallejo, 2004; Plaza-Galvez, 2016), 

aiming to support faculty in choosing suitable tasks for calculus teaching. In 

this regard, Bachelard (2000) and Brousseau (1983) categorised the obstacles 

into three types: ontogenic (neurophysiological and learning limitations), 

epistemological (related to the origin of the concepts), and didactic (related to 

the teaching of the concepts, the scenarios, and the educational system).  

Meanwhile, Autino et al. (2011) characterise the obstacles faced by 

engineering students, such as: understanding mathematical objects and their use 

in problem situations, and using mathematical and everyday language in both 

senses (epistemological); lack of study methods, motivation, interpretation, and 

continuous attention in academic (ontogenetic) commitments; and organising 

the contents of the course, the curricular structure, identifying characteristics of 

the group being taught and inadequate class materials (didactic). Other authors, 

such as Hein and Biembengut (2006), reveal students’ difficulties in not 

knowing the interpretation of a context linked to modelling phenomena or 

processes.  

In particular, several authors point out limitations in the learning of 

calculus, highlighted from the imbalance between the conceptual and 

algorithmic treatment of integrals (Muñoz, 2000; Zavala, Vera, & Ruiz, 2017). 

Also, the contexts of application of calculus are ‘stereotyped’ with 

indiscriminate use of techniques and procedures, privileging algorithms over 

geometric treatment and its meaning in the teaching of the FTC (Artigue, 2002), 

or lack of moments of ‘discovery’ among the student body at university level 

(Gordon, & Gordon, 2007).  

Moreover, authors such as Zavala, Vera, and Ruiz (2017) highlight that 

university students present difficulties regarding the use of representations (and 

transit between them) in the teaching of calculus, which are due to (i) the 

complexity in their use; (ii) the time spent to propose various records (if 

specialised programs are not used to model such as GeoGebra); (iii) they are 

not considered significant within the plans; or (iv) simply because the 

curriculum is delimited by a textbook that teaches only the algebraic and 

operational aspects of the integrals. 

On the other hand, the cognitive demand of a school math task refers 

to the cognitive requirement that it involves, for which we will use the 

taxonomy presented by Smith and Stein (2016) (Table I).   
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Table 1 

Cognitive Demand Taxonomy. (adapted from Smith and Stein’s description 

(2016, p.16-17)) 

Type  Indicators 

Low-level cognitive demand 

M
em

o
ri

sa
ti

o
n

 (
M

E
M

) 

(MEM1) The task involves reproducing or developing previously 

learned rules, formulas or definitions. 

(MEM2) The task does not have an immediate resolution through 

procedures, due to their absence or because of the little time the 

teacher allocates for the task to be solved with the presented 

procedure. 

(MEM3) The task is unambiguous. This implies that the task is an 

exact reproduction of the previously seen procedure or concept and 

the instruction clearly invites to reproduce these directly. 

(MEM4) The task is unrelated to the concepts or meanings that 

underlie the facts, rules, formulas, or definitions that you are 

learning or reproducing. 

U
n

co
n

n
ec

te
d
 P

ro
ce

d
u
re

s 
(P

W
o

C
) 

(PWoC1) The task is algorithmic and uses the procedure 

specifically mentioned or evident from previous instructions, 

experiences or locations of the task. 

(PWoC2) The task requires limited cognitive demand for successful 

completion. There is little ambiguity about what needs to be done 

and how to do it. 

(PWoC3) The task has no connection or relationship to the 

procedures to be used. 

(PWoC4) The task focuses on producing correct answers rather than 

developing an understanding of the mathematical object. 

(PWoC5) The task does not require explanation or only focuses on 

the description of the procedure used.  

Low-level cognitive demand 

P
ro

ce
d

u
re

s 

w
it

h
 

co
n

n
ec

ti
o

n
s 

(P
W

C
) (PWC1) The task fixes the student’s attention on employing 

procedures to develop deeper levels of understanding regarding 

mathematical ideas and concepts. 



  Acta Sci. (Canoas), 24(7), 4-34, Dec. 2022 11 

(PWC2) The task explicitly or implicitly suggests the paths to 

follow, even if they are general procedures proposed superficially, 

which are closely linked to the underlying conceptual ideas, unlike 

rigid algorithms that are opaque with respect to implicit concepts. 

(PWC3) The task requires some degree of cognitive effort. 

Although general procedures can be followed, this is not done 

thoughtlessly. Students must engage with the conceptual ideas 

underlying the procedures to successfully complete the task, which 

develops understanding. 

(PWC4) The task is often represented in multiple ways, such as 

visual diagrams, manipulative materials, symbols, and problem 

situations. That which invites the student to make connections 

between different representations helps elaborate meaning. 

C
o

n
st

ru
ct

io
n

 o
f 

M
at

h
em

at
ic

s 
(D

M
) 

(DM1) The task requires non-algorithmic and complex thinking so 

that the task, its directions, or a (previously) solved example does 

not explicitly suggest predictable or studied paths or approaches. 

(DM2) The task requires students to explore and understand the 

nature of mathematical concepts, processes, or relationships. 

(DM3) The task requires the student to self-monitor or self-regulate 

the cognitive processes. 

(DM4) The task urges the students to access their knowledge and 

recall relevant experiences in which they make appropriate use of it 

while working on the task. 

(DM5) The task requires the student to analyse it and to actively 

examine its restrictions, which allow him to identify, in time, 

possible limitations of the solution strategies and/or the solutions 

themselves. 

(DM6) The task requires considerable cognitive effort and may 

involve a level of anxiety for the student due to the unpredictable 

nature of the required solution process. 

 

Table 1 presents the two subdivisions that characterise the taxonomy of 

cognitive demand. In the first part, the indicators correspond to the low-level 

cognitive requirement (memorisation and procedures without connections) and 

in the second part, they correspond to the high-level cognitive requirement 

(procedures with connections and construction of mathematics). 
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Finally, it seems important to say that before addressing the treatment 

of the FTC, we must refer to the theorem, which is presented in Figure 2.  

 

Figure 2 

Statement Fundamental Theorem of Calculus (Larson, & Edwards, 2018, 

p.36). 

Theorem. Fundamental Theorem of Calculus  

If a function 𝑓  is continuous in the closed interval [𝑎, 𝑏]  and 𝐹  is an 

antiderivative of 𝑓 in the interval [𝑎, 𝑏], then: 

                         ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) 

 

Its presence in Calculus is vital since it relates two important contents 

of it, the derivative and the integral. Its demonstration leads us to a complex 

visualisation from the mathematical point of view, which, at the same time, 

makes it difficult to teach it.  

In relation to learning limitations in the teaching of the FTC, some 

studies point to its identification. Among the most common obstacles in the 

understanding of the FTC are the fuzzy memories about previous mathematical 

objects and the basis for the understanding of others typical of the theorem, 

such as: function, continuity, derivative, and integral, the reason for change and 

accumulation, and the lack of relationships between representations of the 

integral, by not identifying the link of the integral with the area that represents 

or not variability of the limits of the integral), or also dismissing the recognition 

of the importance of the FTC in engineering education programs (Muñoz-

Villate, 2021). These ideas are confirmed by Reyna Segura, (2019) who points 

out that the learning difficulties of the FTC lie in the complexity of the notions 

of Calculus and the language used. 

 

METHODOLOGY 

This work follows the qualitative paradigm, focusing on the data’s 

richness and depth over quantity (Hernández-Sampieri, Fernández-Collado, & 

Baptista, 2010). It is considered a descriptive-interpretative approach, 

according to the nature of the data collected. 
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The reporting subject of the study is a university professor at the 

Universidad Industrial de Santander (Colombia), who teaches in the various 

engineering courses chosen according to availability and accessibility criteria. 

She has seven years of teaching experience at the university level, is 41 years 

old, and has a disciplinary degree (master’s degree in mathematics teaching) 

and a didactic degree (PhD in education, in the line of training of pedagogical 

practices in mathematics).  

The data collection instruments correspond to four class plans of the 

university professor, who designed a didactic proposal for the teaching of the 

FTC for students of the basic cycle in higher education, which includes the 

Engineering careers of the university where she works. From them, we 

extracted statements of the main mathematical tasks of the classes.  

The general objective that the professor proposed for the mathematical 

tasks was models of the geometric representation of the FTC so that students 

could identify essential properties in the representation and use of the theorem 

through the dynamic geometry offered by the GeoGebra software. 

After collecting the data, we conducted a content analysis (Flick, 2004), 

considering as units the paragraphs or groups of paragraphs of each 

mathematical task statement. The categories of analysis were extracted from 

the theoretical elements presented in the previous section, namely the levels of 

cognitive demand and learning limitations, in this case, regarding the FTC. 

Table 2 illustrates the categories used. 

 

Table 2 

Study Analysis Categories 

Category Subcategories 

Cognitive demand, low 

level requirements 

Math Memory Assignment 

Unconnected Procedures (PWoC) 

Cognitive demand, high-

level requirements 

Procedures with connections (PWC) 

Construction of Mathematics (DM) 

Learning Limitations 
Student errors in the face of the proposed math task 

for the TFC 
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Difficulties of students in the face of the 

mathematical task proposed for the TFC 

 

We used the declared categories of cognitive demand (low or high-level 

requirements) specified in Table 2 to analyse the statements proposed in the 

four school math tasks and to classify the tasks. Likewise, we identified the 

learning limitations in all the tasks analysed to observe elements in which they 

recurrently restrict the total understanding of the mathematical object or 

implicit elements from the same conception of the design of the tasks for the 

teaching of the FTC, which contribute to the low or no understanding of the 

mathematical objects. The learning limitations observed in previous studies 

were considered. 

In the following section, the four school mathematical tasks selected 

for the analysis of cognitive demand and learning limitations in relation to the 

teaching of the FTC will be presented. 

 

RESULTS AND ANALYSIS 

We present a sequence of mathematical school assignments that point 

to different moments in the teaching of the FTC. 

Before addressing the analysis of the secondary descriptors of each 

school task (cognitive demand and learning limitations), we will specify the 

tasks’ primary descriptors, the declared purposes, and the mathematical 

contents put into play in them, which are detailed in Table 3. 

 

Table 3 

Declared purposes and contents put into play in each task 

Task Purpose Mathematical Contents 

1 

Explore the meaning of the FTC 

through modelling the behaviour of 

a linear function and the meaning of 

the area under the curve as an 

accumulation function, where its 

Integration, derivation, 

rules of derivation and 

continuity, graphical 

representation of a 

function. 
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function behaviour is analysed for 

FTC applicability 

2 

Evaluate the conditions of the FTC, 

and the existence or not of particular 

conditions for a function.  

Integration, lateral limits, 

and continuity. 

3 

Infer image values of the 

accumulation function F of the 

function f for the interval [0,2��] 

through special characteristics of 

continuity and derivability of the 

cosine function. 

The area under the curve, 

integration of a function, 

evaluation of the integral in 

an interval. 

4 

Example on a function with 

particular continuity characteristics, 

in which the dynamic geometry of 

the GeoGebra software is used to 

recreate the behaviour of the 

functions, under continuity 

characteristics (or not) and its 

implications of applicability of the 

FTC.  

Function continuity, 

derivative, derivation rules, 

integration, area under the 

curve.  

 

This highlights the primary descriptors of each school mathematical 

task (Ramos-Rodríguez, Valenzuela, & Flores, 2019), which have to do with 

what is observed at first sight in school mathematical tasks, specifically, its 

purpose and the mathematical content that is involved in its development.  

Secondary descriptors will then be addressed as school math task 

statements are presented for FTC teaching.   

School Math Task 1. Figure 3 illustrates the statement of the first 

proposed mathematical school task at the university level, whose 

objective is to explore the meaning of the FTC through the modelling of 

the behaviour of a linear function and the meaning of the area under the 

curve as an accumulation function, where its function behaviour is 

analysed for the applicability of the FTC.  
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For this, the teacher properly chooses a continuous function f, with 

derivable F, as described in figure 3. 

 

Figure 3 

Statement of the first school math task. 

For function f defined by 𝑓(𝑥) =
4

3
𝑥 − 1 , with 𝑥 ∈ [0.1,4] , using your 

graph and GeoGebra tools: 

a) Check if the function is continuous;  

b) Calculate the area under the curve described by 𝑓;  

c) Determine the integral that represents the area under the curve in the 

interval [0.1,4].  

d) Visualise the trace values of the function that identifies the accumulated 

area 𝐹, as the value of 𝑥 increases (towards the end 4), for what values 

of 𝑥, 𝐹 turns 0? 

e) Perform the calculation of F and verify using the FTC. 

(Tip: Use Applet 1: https://www.GeoGebra.org/m/hcvdbkt8) 

 

In this challenge, students are expected to provide an answer such as 

the one illustrated in Figure 4. 

This task starts from a linear function highlighted in red, which at first 

glance can be checked for continuity in the closed interval [0.1,4]. Because it 

is a linear function, it is “smooth” throughout its path.  

Subsequently, the student is expected to calculate the area under the 

curve using the “trace” tool of the accumulation function in GeoGebra, 

resulting in 𝐴 = 6.76. 

One should not find difficulties in determining algebraically the 

integral requested in paragraph c) since it only requires simple calculations after 

evaluating the integral in the closed interval [0.1,4]. That is, the trace can show 

what the area under the curve will be, by pointing to the ends of the interval, to 

finally obtain 6.76. One of the hypotheses that students must establish about 

the trace function is to identify if the function is derivable. 

https://www.geogebra.org/m/hcvdbkt8
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Figure 4 

Expected answer with application from Applet 1; 

(https://www.GeoGebra.org/m/hcvdbkt8)  

 

 

For paragraph d) the accumulation function F will be defined as 𝐹(𝑥) =
2

3
𝑥2 − 𝑥, which is highlighted in the graph in pink. This area travelled is 

highlighted by the trace that the curve leaves (with the values of the area) when 

“passing” through the points of x, along the interval [0.1,4]. 

Finally, in section e), when deriving the accumulation function 𝐹(𝑥) =
2

3
𝑥2 − 𝑥 , we obtain: 𝐹′(𝑥) = 2 (

2

3
) 𝑥2−1 − 1 =

4

3
𝑥 − 1 , which coincides with the 

function 𝑓, satisfying the FTC.  

In particular, it is important for the student to check, through graphical 

modelling of the function 𝑓  and the trace of the accumulation function 𝐹, that 

the value of the accumulated area varies. That is, its accumulated area is in the 

negative values, by the values of 𝑥, until it reaches 𝑥 = 1.4. From this point of 

view, the graph of the accumulation function takes positive values up to 6.76.  

We can observe three learning limitations for this task. First, to check 

continuity in function, students are expected to engage the concepts of lateral 

boundaries of the linear function or to deduce it from the graphical 

representation. One of the difficulties that the student may have at this point is 

about defining the interval of the function [0.1, 4] , since they are not 

https://www.geogebra.org/m/hcvdbkt8
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necessarily openly defined, but for a specific interval, which would imply a 

lack of understanding of the mathematical object and its specificity for the 

given interval. This difficulty coincides with Hein and Biembengut’s (2006) 

findings.  

Second, students are expected to identify the linear function and the 

area under the curve of the linear function, [0.1, 4]. However, they may not 

consider the area under the curve for the interval [0.1, 0.75], since it is an area 

that is not explicitly under the curve and is not related to the value of an area in 

a negative zone of the plane by the values of x for the function. For this, it is 

possible to investigate the values of 𝑥 , for which the function F  will take 

positive or negative values or 0. This leads to restrict the understanding of the 

geometric treatment and meaning of the integral, as pointed out by Artigue 

(2002). 

Finally, a difficulty may lie in relating the value obtained from 𝐹 at a 

point 𝑥 to the area under the curve. That is, recognising the function 𝐹 as an 

area accumulation function. Finally, the area equivalent to the pink zone is 

(6.76)  equivalent to the stored value of the area represented by the 

accumulation function 𝐹 . In this case, this trouble is a consequence of the 

geometric understanding of the accumulation function and its use in a particular 

situation within the FTC, as alluded to by Autino et al. (2011) 

On the other hand, this task is classified as high cognitive demand task 

of the type “procedures with connections” (PWC4), since it requires the use of 

different representations (algebraic, numerical, graphical, and tabular), with the 

handling of different concepts, to be able to verify the applicability of the FTC 

in this challenge. So, the students are involved in solving the tasks from the 

connections between the representations that lead to the meaning of the 

concept.  

School Math Task 2. Figure 5 illustrates the second task, whose 

objective is to evaluate the conditions of the FTC from the analysis of the 

existence (or not) of particular conditions for a function 𝑓 , from the 

representation of the function accumulation and verification of minimum 

conditions of the functions.  

For this task, the teacher appropriately chooses a non-continuous 

function 𝑓, with F derivable in [−5,0] and (0,5]. 
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Figure 5 

Statement of the second school math task 

Given the function: 𝑓(𝑥) = {
3, 𝑠𝑖 𝑥 ∈ [−5,0]

−𝑥, 𝑠𝑖 𝑥 ∈ (0,5]
} 

a) Draw the accumulation function F for each part of the function 

domain 𝑓.  

b) Verify the condition of existence algebraically. 

c) Does 𝑓 the TFC satisfy? Argue. 

(Tip: Use Applet 2: https://www.GeoGebra.org/m/thh5dnwv)  

 

From the use of Applet 2, students can provide answers such as the one 

illustrated in Figure 6. 

 

Figure 6 

Discontinuous function representation from Applet 2 

(www.GeoGebra.org/m/thh5dnwv) 

 

 

https://www.geogebra.org/m/thh5dnwv
http://www.geogebra.org/m/thh5dnwv
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According to the graph of the function, it is possible to observe that it 

presents a discontinuity when 𝑥 = 0 , which implies that f is not a continuous 

function, for lim
𝑥→0+

𝑓(𝑥) = 0  and lim
𝑥→0−

𝑓(𝑥) = 3. Despite this, 𝐹  exists at every 

point of the function (see Applet 3: https://www.GeoGebra.org/m/rqe7trjt: 

GeoGebra) because, under the curve, the area continues to accumulate. 

However, despite the discontinuity condition in 𝑓. In 𝑓 this it does not affect 

the continuity of 𝐹 at every point of the interval [−5,5]. That is, in the interval 

[-5,0] would be 𝐹(𝑥) = 3𝑥, and in the interval (0,5] would be 𝐹(𝑥) =
−𝑥2

2
 . 

The “abrupt change” that the function 𝐹  makes in𝑥 = 0  is notorious 

since its graph changes slope and decreases until it reaches 𝑥 = 5.  

Despite this condition, 𝐹′will always exist in this type of graphic, if one 

were to restrict the function to the points at which 𝑓  is continuous. That is, in 

this example, we can notice that 𝐹is not derivable in 0, in the interval [−5,0] 

would be 𝐹′(𝑥) = 3, and the interval (0,5] would be 𝐹′(𝑥) =
−2𝑥

2
= −𝑥. That 

is: 𝐹(𝑥) = {
3𝑥, 𝑠𝑖 𝑥 ∈ [−5,0]

−
𝑥2

2
, 𝑠𝑖 𝑥 ∈ (0,5]

} and its derivative: 𝐹′(𝑥) = {
3, 𝑠𝑖 𝑥 ∈ [−5,0]

−𝑥, 𝑠𝑖 𝑥 ∈ (0,5]
} 

Therefore, although the function f does not satisfy continuity, F does, 

and it satisfies that 𝐹’ = 𝑓 in each sub-interval [−5,0] and (0,5]. 

We have set this example of school math task to evaluate the conditions of the 

FTC and the existence or not of particular conditions of a function.  

We could observe three limitations in relation to the implementation of 

the task. First, a common error in this activity is that the student considers the 

function 𝑓  as continuous when relating it to the accumulation function. Not 

noticing the characteristics of each function, and dismissing continuity, this 

action can lead to a conceptual error where they indicate that 𝐹′(𝑥) = 𝑓(𝑥). 

One of the questions that will arise here will be: Why, if there is the 

accumulation function 𝐹, do you need to ensure the continuity of f? In this way, 

it would be related to a difficulty of a conceptual type, and its application in a 

situation of discontinuity, such as those indicated by Hein and Biembengut 

(2011). 

Second, students may consider two functions instead of a single, part-

defined, function. When considered as two functions, it will allow us to find the 

𝐹 functions of the intervals [−5,0] and (0,5]. So, it meets the given condition 

of the FTC and may come to propose one 𝐹′(𝑥) = 𝑓(𝑥) of each interval. In this 
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case, it could be interpreted as a challenge from the geometric treatment and its 

adequate meaning (in Artigue’s words, 2002) of the graphed function as 

isolated parts.  

Finally, as the third limitation of learning, we observed that we must 

pay attention to the 0 when analysing the continuity in the function. The 

displacement through different representation records could, for example, lead 

students to contemplate the 0 as a value in both intervals, although it is only 

contained in the first domain of the function. That is, it corresponds to a 

problem of representation records, as stated in Zavala, Vera, and Ruiz (2017). 

On the other hand, from the point of view of the cognitive demand of 

the task, we can see that its statement presents a task whose cognitive demand 

is high, where procedures with connections (PWC4) stand out, since it aims for 

the student to mobilise algebraic and graphic representations to verify the 

existence of the function 𝐹  that is understood from its verbal-algebraic 

representation, for the meaning of the concept. 

School Math Task 3. The statement proposed in Figure 7 illustrates 

the third task, whose purpose is to infer image values of the accumulation 

function F of function 𝑓 for the interval [0,2𝜋] through special characteristics 

of continuity and derivability of the cosine function. These characteristics 

reveal both the initial function𝑓 and the accumulation function.  

For this school math task, the teacher properly chooses a function 

where the student can identify function F from modelling with the GeoGebra 

software and the FTC application. 

 

Figure 7 

Statement of the third school math task 

Let function 𝑓 be defined as 𝑓(𝑥) = cos (𝑥)   in the interval [0,2𝜋]. 

(Tip: Lean on GeoGebra Applet 3: https://www.GeoGebra.org/m/rqe7trjt,to 

verify that function , indicated in the TFC, exists) 

 

In Figure 8, the trigonometric function 𝑓 defined as𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) is 

highlighted in purple. This function is continuous in the closed interval 

[0,2[��]. Moreover, the function is derivable.  

https://www.geogebra.org/m/rqe7trjt
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The accumulation function 𝐹(𝑥) = 𝑠𝑒𝑛(𝑥), highlighted in the graph in 

blue, arises from the Riemann rectangles. This travelled area is demarcated by 

the images of the point 𝑥, included in the closed interval [0,2𝜋]. 

 

Figure 8 

Modelling the sine function in the interval [0.2 π] from Applet 3 

(https://www.GeoGebra.org/m/rqe7trjt) 

 

 

This is, for the point 
11

9
𝜋𝑟𝑎𝑑 , equivalent to 𝑥 = 3.84 . The axis y will 

be given by 𝑦 = −0.66 . This indicates that the area that is in the negative part, 

accumulated to that point, is greater than the positive one, in 0.66 units. That 

is, the cumulative area of the highlighted function 𝑓(𝑥) = cos (𝑥), is−0.66 , 

when they have been almost traveled 
11

9
𝜋𝑟𝑎𝑑 . 

At this stage of the mathematical task, we should propose to the 

students two representations for their interpretation of the model and analysis 

of its behaviour for the applicability of the FTC. 

This school math task also allows us to evaluate the conditions of the 

FTC and the existence or not of particular conditions of a function.  

In relation to learning limitations, we observed two arising from this 

mathematical task. The first has to do with the representation of the 

trigonometric function and the scale units that the radians represent in this 

https://www.geogebra.org/m/rqe7trjt
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trigonometric function, since they may lead to students’ erroneous 

representation. When passing through the equivalences of the measurements of 

the contemplated angles (in radians), both for the f function and for the 

accumulation function F, they could become limitations of the task, since the 

time foreseen for its development would be invested mostly trying to graph 

properly if the suggestion of using Applet 3 is not used. This leads to one of the 

learning limitations mentioned by Zabala, Vera, and Ruiz (2017) regarding the 

transit between representations, and above all, their minimum use within the 

classroom when trying to represent adequately and not involving adequate 

resources for the graph, which optimise the time in the correct interpretation of 

the graph, based on the previously given conditions. 

The second limitation of learning is related to the fact that since the 

function f is continuous in the defined interval [0,2𝜋], it is possible to identify 

that there is an accumulation function F that is continuous in the same interval, 

and also derivable, so by deriving the accumulation function given by 𝐹(𝑥) =
𝑠𝑒𝑛(𝑥) , we obtain: 𝐹′(𝑥) = cos(𝑥) = 𝑓(𝑥) . In this particular function, you 

have to focus your gaze on the characteristics of the resulting accumulation 

function for this function. Since they are trigonometric functions, it is possible 

that students confuse the value of derivatives and integrals, since by linking a 

wrong sign to the integral of the function 𝑓 , it will lead to the image of the sine 

function, reflected on the axis 𝑥 , which will not allow him to see the 

relationship with the accumulation function. Inadequate understanding of the 

concept, its meaning, and its geometric treatment (Artigue, 2002) are involved 

in the correct interpretation and representation of functions. 

In this task, we proposed that students move between two 

representations to interpret the model and analyse its behaviour for the 

applicability of the FTC. In this way, this task is considered to be of high 

cognitive demand, but focused on the construction of mathematics (DM1 and 

DM2). The use of trigonometric functions in the examples of representations 

leads to having some parameters in measurements in radians on the plane, 

which require an effort of the cognitive work that this entails in relation to what 

has already been previously performed. This cognitive work required of the 

student is non-algorithmic and complex, and verification does not require 

previously reviewed paths. 

School Math Task 4. The statement of the task in Figure 9 aims to 

exemplify a function with particular characteristics of continuity, in which the 

dynamic geometry of the GeoGebra software is used to recreate the behaviour 

of the functions, under characteristics of continuity (or not) and its implications 
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of the FTC applicability. In particular, for this task, the teacher chooses 

appropriately the interval [0,9]  over the function intended to identify the 

primitive, given a function  modelled by Applet 4.  

Figure 9 

Statement of the fourth mathematics school task. 

Let the function  be defined as 𝑓(𝑥) = √𝑥 − 1 in the interval [0,9], find 

the function F, primitive of f.  

(Tip: Use Applet 4, https://www.GeoGebra.org/m/abwfysf8). 

 

In Figure 10, the trigonometric function 𝑓is defined algebraically as 

𝑓(𝑥) = √𝑥 − 1, is plotted alongside its primitive.  

Figure 10 

Picture of 𝑓(𝑥) = √𝑥 − 1 next to its primitive from Apple 4 

(https://www.GeoGebra.org/m/abwfysf8) 

 

 

The function f (highlighted in Figure 10 in red) is continuous in the 

closed interval [0,9] and is also derivable in that interval. The accumulation 

function F is highlighted in the graph in dark green. This travelled area is 

demarcated by the images of the point x, included in the closed interval[0,9]. 

https://www.geogebra.org/m/abwfysf8
https://www.geogebra.org/m/abwfysf8
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We set this example of school math task to evaluate the conditions of 

the FTC and the existence or not of particular conditions of a function.  

In relation to the learning limitations that students may have when 

facing this school math task, we emphasise three. The first is that students could 

consider the non-existence of the function for intervals with lower limits than 

0, so it would not guarantee the condition of continuity. However, this function 

is defined for the interval [0,9] . The function defined in this interval is 

continuous at all points. In this way, the limitation would be related to the 

definition and its understanding in the application of a particular situation (other 

values not defined in the interval), as indicated by Autino et al. (2011). 

The second learning limitation is related to the fact that, in this task, it 

seems that the students could not identify the function that describes the 

accumulation function, i.e., they did not know the rules of integration of the 

radical function; however, a conversion from root to power (
1

2
) could be useful 

when finding the integral defined for that interval. Finally, as a learning 

limitation, students may have problems with the application of arithmetic-type 

algorithms that could interfere with the development of this task when finding 

the function 𝐹 . Likewise, they could interfere in the inverse process of 

identifying the derivative of 𝐹 as the initial function 𝑓. Despite the imbalance 

between the conceptual and procedural, seen as the application of integration 

rules, problems still persist in understanding the mathematical object, as well 

as the concept and its meaning (Artigue, 2002). 

The statement of this school math task can be classified as of low 

cognitive demand, memorisation type (MEM1), since it is easy to apply 

algorithms already learned. For example, the school math task 1, in which the 

functions were in similar conditions, of an area under the curve, and it would 

be easier if the student had already lived a previous experience, despite having 

a radical function in this task.  

 

CONCLUSIONS 

We intended to present and analyse school mathematical tasks for the 

treatment of the FTC from its learning limitations and the cognitive requirement 

that puts its statement at stake. With this, it is possible to advance in the 

understanding of the interpretation of the geometric representation and the 

algebraic verification of the theorem and how to bring it into the classroom.  
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A variety of proposals for the classroom that point to the treatment of 

mathematical university concepts can be found in the literature (Castelló & 

Monereo, 1999; Espinosa, 2008; Peñalosa, Sonia, & Roa, 2013; Robles, 

Tellechea & Font, 2014). We highlight the work of Robles, Tellechea, and Font 

(2014) and Monroy and Riveros (2020), who propose an alternative approach 

to the FTC from sequence designs, which, in turn, include virtual environments 

or other approaches that value inverse relationships between integrals and 

derivatives. In this scenario, we observed that, although the existing proposals 

favour the understanding of the FTC object, they do not consider the levels of 

cognitive requirement that the present classroom proposal poses. Therefore, 

from this point of view, this work contributes to the university community with 

a proposal of specific school mathematical tasks for the teaching of FTC 

focused on the diversity of cognitive demand that must be present in them, of 

low and high level of requirement, which involve memorisation tasks, 

procedures without connections, procedures with connections, and construction 

of mathematics. 

On the other hand, and in the same line, we agree with what was stated 

by García and Benítez (2012), who suggest that students’ learning is favoured 

when there is congruence between the cognitive demand of the tasks, the 

mathematical content of the problems, and the curricular objectives, which, in 

one way or another, we have wanted to consider in this proposal, being careful 

regarding the objective of the task and the demand required. 

In relation to learning limitations, we must take into account that the 

university professor may not be aware of them, which may result in obstacles 

in the teaching and learning process of the various mathematical concepts. In 

the case of the FTC, we found that the limitations detected in the literature 

(Muñoz-Villate, 2021; Reyna-Segura, 2019) were part of those detected in this 

study for the proposed mathematical tasks. In particular, we noted that in the 

university reality, an algebraic and/or algorithmic treatment predominates in 

the teaching of the FTC, i.e., an imbalance between the conceptual and the 

algorithmic, which privileges the automation of operating techniques of the 

mathematical object (isolated/disintegrated) and not the formation of future 

generations of engineers capable of transcending the use and relationships 

between integrated mathematical objects, as pointed out by Muñoz (2000) and 

Zavala, Vera, and Ruiz (2017). In particular, the four tasks presented here reveal 

difficulties related to the understanding of the mathematical object and its 

application in particular situations, mostly delimited by intervals, or the 

understanding of continuity. Likewise, some of these tasks reveal possible 

difficulties related to the scarce appropriation of the mathematical object and 
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application to other representation records, not necessarily algebraic. The lack 

of use of these records, and the little transit between them, reveals possible 

implications of the deduction of characteristics of the integrals, for their 

analysis and treatment, or also, for a correct interpretation and application of 

the FTC. This also shows the difficulty previously pointed out by Muñoz-

Villate (2021) in relation to the lack of previous knowledge about the FTC. 

From the above, it follows that it must be a purpose of the university 

professor to be constantly instructed about it, in order to favor the learning that 

arises in the classroom and implement the necessary resources to make 

mathematical modelling a transversal process also at the higher education level.  

Various proposals for activities are presented in university textbooks, 

where there seems to be no previous analysis of the cognitive demand that it 

entails for students, and, sometimes, they are set considering the developmental 

time they involve for the teacher, which can lead to contemplating times outside 

the reality of the students’ level, which coincides with the study of Acero 

(2019).  

According to Smith and Stein (2016), it is necessary to propose to 

students math tasks that involve diversity in the cognitive demand put into play. 

In this sense, we agree with Penalva, Posadas and Roig (2010) on the need to 

provide an adequate balance between different types of mathematical tasks, 

since it produces a positive impact on the teaching of mathematics at university 

level. Therefore, we maintain that at higher education, this need must also be 

taken into account, whether they are low-level (memorisation or procedure 

without connections) or high-level (procedures with connections or 

mathematical constructions), so that university students can pass through the 

various requirements that a task can provide and be able to gradually mature 

the abstract and complex concepts that are involved in it.  

Based on the study, we maintain that at the university level, it is 

advisable to begin with a staff of mathematical tasks that involve a low-level 

requirement, so that there is an adequate familiarisation of the concepts so that 

students gain confidence in the process of learning increasingly complex and 

abstract concepts. However, requirements should not be kept at this level of 

demand, but rather, based on new mathematical tasks, they should evolve to 

those of a high level of demand, to ensure a deep understanding of the concepts 

studied and advance in the development of high-level cognitive skills, such as 

inquiry and inference.  
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On the other hand, these requirements are relativised according to the 

students’ individual characteristics. It is the desire of the university professor to 

recognise its characteristics, where he/she can search for or design 

mathematical tasks that provide various types of cognitive challenges to 

students, and that lead them to move between the different levels, so that 

students’ learning is favoured when there is congruence between the cognitive 

demand of the tasks, the mathematical content of the problems and the proposed 

curricular objectives, as stated by García and Benítez (2013). This will allow 

university students to solve tasks that are not necessarily repetitive in 

memorisation, procedural and operative skills, but transcend the applicability 

of the concepts, in this case, the applicability of the FTC. 

In this line, a projection of this study is to provide university faculty 

with effective professional development programmes (Ramos-Rodríguez, 

Bustos, & Morales, 2021) that allow them to develop skills to face their 

teaching performance from a broad perspective in relation to the cognitive 

demand that is at stake in their classroom and the learning limitations that may 

arise in it, in order to have future engineers with more appropriate knowledge 

to face their future profession. 

On the other hand, based on the study, we consider relevant the 

inclusion of modelling in the Calculus courses, as proposed in the mathematical 

tasks studied, since it can allow students to formulate hypotheses based on the 

use of tools, such as GeoGebra in this case. 

Finally, there is no doubt that an extension of this study is to investigate 

how university professors implement these mathematical tasks, in order to 

understand them, and support them to maintain the cognitive demand that the 

mathematical task requires.  
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