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ABSTRACT 

Background: The Mathematical Working Spaces (MWS) theoretical 

framework has developed a growing interest in how mathematical modelling is 

recognised, analysed, and articulated from its theoretical and empirical scopes. Given 

the articulations identified in the literature, it is interesting to determine whether new 

networks with the MWS provide powerful strategies for analysing mathematical 

modelling task resolution. Objective: to characterise the modelling activity from the 

network composed by the Blomhøj modelling cycle and the MWS in engineering 

students. Design: This work is a case study with a qualitative approach, which analyses 

the resolution of a modelling task through the proposed network. Setting and 

participants: The experimentation was carried out in an integral calculus course for a 

computer civil engineering career at a Chilean university. Modelling practices are not 

usual in this second-year subject, although enhancing their use in professional 

education is necessary. Data collection and analysis: We collected the written records 

of the students, selecting one to perform the in-depth analysis due to its high 

representativeness and clarity, as evidenced in the documents. Three steps were 

followed to characterise the modelling activity in the written record: description, 

analysis, and interpretation. Results: The Blomhøj modelling cycle might present 

connections with the MWS at the formulation of the problem and not only at the 

systematisation, which is a novelty in this field of research. Conclusions: A novel 

approach with which to develop the network between the MWS and modelling 

http://www.periodicos.ulbra.br/index.php/acta/
http://www.periodicos.ulbra.br/index.php/acta/
https://doi.org/10.17648/acta.scientiae.XXXX
https://doi.org/10.17648/acta.scientiae.XXXX
mailto:paulasinttia@gmail.com
https://orcid.org/0000-0001-6162-654X
https://orcid.org/0000-0003-0749-0551
https://orcid.org/0000-0003-1067-129X
https://orcid.org/0000-0001-9650-1261


 

 Acta Sci. (Canoas), 24(7), 62-91, Dec. 2022 63 

emerges, emphasising the investigation of mathematical problems using the student’s 

reality in higher education. 

Keywords: Mathematical Working Spaces (MWS); Blomhøj modelling 

cycle; MWS-modelling complementarity; modelling tasks. 

 

Articulación entre el ciclo de Modelización de Blomhøj y Espacios de Trabajo 

Matemático. Análisis de una tarea en Educación Superior 

 

RESUMEN 

Antecedentes: El marco teórico de los Espacios de Trabajo Matemático 

(ETM) ha desarrollado un creciente interés en cómo se reconoce, analiza y articula la 

modelación matemática desde sus alcances teóricos y empíricos. Dadas las 

articulaciones identificadas en la literatura, es interesante determinar si nuevas redes 

con el ETM brindan estrategias poderosas para analizar la resolución de tareas de 

modelación matemática. Objetivo: caracterizar la actividad de modelación a partir de 

la red formada por el ciclo de modelación de Blomhøj y el ETM en estudiantes de 

ingeniería. Diseño: Se planteó un estudio de caso desde un enfoque cualitativo para 

analizar la resolución de una tarea de modelación a través de la red propuesta. Entorno 

y participantes: La experimentación se realizó en el curso de cálculo integral de la 

carrera de Ingeniería Civil Informática de una universidad chilena. En esta asignatura 

de segundo año no son habituales las prácticas de modelación, aunque es necesario 

potenciar su uso en la formación profesional. Recolección y análisis de datos: Se 

recolectaron los expedientes escritos de los estudiantes, seleccionando uno de ellos para 

realizar el análisis en profundidad debido a su alta representatividad y claridad, como 

se evidencia en los documentos. Además, se siguieron tres etapas para caracterizar la 

actividad de modelación en el registro escrito: descripción, análisis e interpretación. 

Resultados: El ciclo de modelación de Blomhøj presentaría conexiones con el ETM 

desde la formulación del problema y no sólo desde la sistematización, lo cual es una 

novedad en este campo de investigación. Conclusiones: Se evidencia un enfoque 

novedoso para desarrollar la red entre el ETM y la modelación, enfatizando la 

investigación de problemas matemáticos usando la realidad del estudiante en educación 

superior. 

Palabras clave: Espacios de Trabajo Matemático (ETM); ciclo de 

modelización de Blomhøj; complementariedad ETM-modelización; tareas de 

modelización. 

 

INTRODUCTION 

The research work on mathematical modelling has more than 40 years 

of development globally. As a result, multiple communities and scientific 

investigations have positioned modelling in curricula worldwide (Kaiser, 

2020). However, it does not necessarily mean that there is a global consensus 
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on what we mean by modelling. Indeed, there are multiple approaches in Latin 

America (Arrieta & Díaz, 2015) and Europe (Doerr et al., 2017), promoted by 

a wide variety of educational objectives and a variety of sources both for the 

construction of mathematical knowledge and for the typology of modelling 

tasks (Kaiser & Sriraman, 2006). Despite that, there is a general conception of 

such approaches from the fact that modelling activity crosses the boundaries 

between reality and mathematics when recognised as knowledge (Blomhøj & 

Jensen, 2003). 

For the model of the Mathematical Working Spaces (MWS) (Kuzniak 

et al., 2016; Kuzniak et al., 2022), there is an interest in understanding how 

reality affects the development of a mathematical task (Lagrange, 2018) or in 

types of mathematical tasks located in reality to encourage didactic approaches 

for teaching and learning. This topic has been considered in the last 

international symposia on mathematical work (Nechache, 2018; Guerrero-Ortiz 

& Henríquez-Rivas, 2018), generating complementarity between modelling 

and ETM, promoting the design of modelling tasks based on real contexts. In 

particular, studies of the complementarity between both frameworks have 

emphasised the Blum-Borromeo cycle (Borromeo, 2006), obtaining good 

results when relating the modelling stages with the circulations in the ETM 

(Cosmes & Montoya-Delgadillo, 2021). 

This study proposes to expand the research on the relationship between 

the MWS and other related models of mathematical modelling, in this case, 

with the Blomhøj cycle. The goal is to recognise interconnections (Castela, 

2021; Bikner-Ahsbahs & Prediger, 2009; Maier & Beck, 2001; Prediger et al., 

2008; Radford, 2008) between the stages of modelling with circulations 

(Montoya-Delgadillo et al., 2014), not only in the cognitive dimension of the 

MWS but also in the epistemological dimension. To this end, we will describe 

the different scopes of this complementarity from a theoretical and an empirical 

point of view. Specifically, this study is based on evidence collected from a 

particular context of interest for research in higher education, namely, 

mathematical modelling of real research problems in calculus courses for 

engineering. This aspect has not been addressed enough in the literature 

because most proposals are aimed at school mathematics (e.g., Borromeo-Ferri, 

2007; Blum & Borromeo-Ferri, 2009). The choice for the Blomhøj cycle is 

because it considers epistemological aspects of the theory underlying 

modelling, which acquires greater importance when the problems correspond 

to actual investigations, which require working in task solving with high 

cognitive demand (e.g. Blomhøj, 2020; 2021). 
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This article is structured in two parts. The first describes the state of the 

art of modelling in MWS; to this effect, the MWS framework and the modelling 

approaches used for the analysis by the MWS are briefly described. After that, 

we discuss some works of interest on modelling in MWS. Then, we introduce 

the Blomhøj modelling cycle and a possible theoretical complementarity 

between the two frameworks, which constitutes the main novelty of this 

investigation. The second part deals with analysing the data collected in 

experimentation on the resolution of a task considered as modelling. In 

particular, we describe the methodological aspects and the experiment 

implemented in a calculus course in a civil engineering career. Next, we analyse 

the data to characterise the mathematical work of engineering students when 

solving an actual research problem modelling task based on the proposal of 

complementarity between the Blomhøj modelling approach and the MWS. 

Finally, we present the conclusions that make it possible to further develop the 

MWS-modelling complementarity, emphasising real investigation problems in 

higher education. 

 

THEORETICAL BACKGROUND 

Mathematical Working Spaces (MWS) 

The main goal of the MWS analytical approach (Kuzniak et al., 2022) 

is to characterise mathematical work performed in an educational context to 

facilitate and improve the conditions in which the teaching-learning process of 

mathematics occurs. For this, the MWS theory considers two dimensions: 

epistemological and cognitive, represented as horizontal planes in Fig. 1; the 

first focuses on research oriented from the work paradigms, which depend on 

the domains of mathematics that structure it and takes into account the diversity 

of the activity of mathematicians related to the nature of the objects studied, 

which implies knowing the epistemological foundations of the implied 

differences. On the other hand, MWS, as a human activity, requires the 

cognitive dimension, which is associated with the epistemological plane 

through problem solving. Abstract space, thus conceived, is understood as an 

organised structure that describe individuals’ activities when solving problems. 

 



 

66 Acta Sci. (Canoas), 24(7), 62-91, Dec. 2022  

Figure 1 

Plan of the Mathematical Working Space (MWS) (Kuzniak & 

Richard, 2014) 

 

 

The epistemological plane consists of three interacting components: the 

referential (formed by properties, theorems and definitions, among others), the 

representamen (sign), and artefacts (material or symbolic); in the same way, the 

cognitive plane is composed of visualisation, construction and evidence. The 

MWS theory considers among its principles some authors that provide it with 

a foundation, among which Peirce (1990) stands out due to his definition of the 

real world through signs. For Peirce, the sign does not necessarily represent an 

empirical object; it can represent a conventional law, the ownership of a thing, 

an action or an event. The objects that the signs represent may be perceptible, 

imaginable and still unimaginable, but they are always known (Peirce, 1990; 

p.94). The signs allow us to understand and know reality based on reality itself, 

which would allow us to relate MWS with modelling based on the latter, where 

the epistemological plane, through semiotic genesis, could be a possible 

intersection of both theories. 

The analysis of mathematical work through the MWS theory allows us 

to study how it is built progressively, connecting the components of the 

epistemological and cognitive planes through three geneses: semiotic, 

instrumental and discursive. According to the scheme depicted in Fig. 1, 

semiotic genesis, considered a process of decoding and interpreting signs, 

refers to perceiving a sign (representamen) through cognitive understanding. 

The inverse relationship, coding or instantiation, occurs in understanding the 

individual when constructing or specifying a sign. Instrumental genesis allows 
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artefacts to be operational in constructing concepts or objects that contribute to 

the success of mathematical work. Finally, the discursive genesis of proof is 

the process by which the properties and results organised in the referential are 

developed to be available for mathematical reasoning and discursive 

validations, i.e., those that go beyond graphical, empirical, or instrumented 

proofs. 

Epistemological and cognitive planes structure the MWS theory, 

providing a model for understanding circulation within the mathematical work. 

These two levels are articulated by the three geneses and their interactions 

described by three vertical planes: Sem-Dis, Sem-Ins and Ins-Dis. These 

emerge naturally in Fig. 1, involving semiotic and discursive, semiotic and 

instrumental, and instrumental and discursive genesis, respectively. 

Finally, we consider the paradigms of real analysis (Montoya-

Delgadillo & Vivier, 2016), which guide the mathematical work in this field. 

In particular, the arithmetic/geometric analysis (GA) paradigm involves work 

of a perceptual type based on interpretations arising from graphs or numbers, 

taking into account the role of the figures or different visualisations that activate 

that work. Thus, it supports early-stage teaching of a given object, such as 

equations or functions, favouring interpretations with implicit hypotheses 

based on geometry, arithmetic calculation, or the real world. 

 

The Blomhøj modelling cycle 

The modelling activity is interpreted as a cyclical and non-linear 

process, continuously characterising the relationships between the ideas that 

live in reality and mathematics and highlighting the sub-processes that relate 

them both from an epistemological basis defined by the individual with 

different scopes. It begins with a real-life problem proposing a goal that 

demands a modelling task based on reality. The problem is located in an 

investigation domain, in many cases of an interdisciplinary nature, prevailing a 

dynamic research process that considers as its basis the relationships between 

mathematical concepts and ideas and the experiences of real life (Artigue & 

Blomhøj, 2013). 

For Blomhøj (2004), the modelling process starts from a real-world 

situation, often not having an explicit character. For example, for the problem 

of saving water in the mornings (Blomhøj, 2004), one task would be how to 

optimise the variables to be considered in the shower or some other relevant, 

guided by the epistemological characterisation of the individual (Artigue & 
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Blomhøj, 2013). Starting from an analytical characterisation, as depicted in Fig. 

2, the mathematical modelling process has six Blomhøj sub-processes (2004; 

2013): 

a) Problem formulation: formulation of a more or less straightforward 

task that guides the identification of the characteristics of the 

perceived reality that will be modelled.  

b) Systematisation: selecting the relevant objects and relationships, 

among others, within the resulting research domain and their 

idealisation to make a mathematical representation possible.  

c) Translation of these objects and relationships into mathematical 

language.  

d) Use of mathematical methods to arrive at mathematical results and 

conclusions.  

e) Interpretation of the results and conclusions considering the initial 

research domain.  

f) Evaluation of the model’s validity by comparison to data or 

theoretical knowledge or personal or shared experience. 

 

Figure 2 

Modelling Cycle (Blomhøj and Kjeldsen, 2006) 
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The Blomhøj cycle considers three central islands as the basis for its 

dynamics (see Fig. 2.): experience, data, and theory. Solving the problem or a 

given task often leads to data collection, which may be part of a surmised 

model. Also, the experience can lead to a constructive idea of the model, whose 

approach is generally inductive. However, the use of mathematical models that 

exist in theory emphasises their use in solving a modelling task, highlighting a 

deductive nature. Likewise, the theory island (see Fig. 2) also means the 

knowledge employed following the research domain to be used in the 

modelling task, which significantly affects the validation processes of the 

model and its applications. 

The sub-processes implemented to solve a modelling task, 

characterised in Fig. 2, naturally lead to mathematical ideas drawn according 

to the choice of research domains. These give to the whole resolution process 

from an epistemological and cognitive perspective. It proposes a complex 

system of work, highlighting central aspects of the process (the islands: data, 

experience, and theory in Fig. 2), which link knowledge of reality and 

mathematics, making it possible to provide –from the point of view of research– 

varied analytical forms of idealisation and, therefore, diverse possibilities for 

building mathematical models. This process, together with the task objective, 

will make it possible to establish ways of delimiting and characterising 

mathematical work, particularly circulations through the cycle as the student’s 

personal MWS develops. 

 

Mathematical Working Spaces (MWS) and Modelling 

It is currently possible to study multiple works regarding modelling 

from the point of view of the MWS (Nechache, 2016; Rauscher & Adjiage, 

2014, among others). In addition, one may find a diversity of points of interest 

in the investigations: some consider tasks as a contextualised environment to 

develop the MWS (Rauscher & Adjiage, 2014; Cosmes, 2018); others analyse 

the effects of recognising reality as a unique environment for the development 

of the MWS (Parzycs, 2014); or, also, problematise the theoretical modelling 

frameworks to confer conceptual results and eventual articulations with the 

MWS (Nechache, 2016; Derouet, 2016). This last working group is of interest 

for this study since it aims to facilitate the analysis of modelling tasks, 

considering a particular approach such as that of Blum-Borromeo (Borromeo-

Ferri, 2006). In this sense, this work’s contribution is to develop a conceptual 

articulation between MWS and the Blomhøj modelling cycle, promoting other 

forms of task analysis and broadening the discussion in the scientific 
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community. It is not a question of recognising some suitable modelling 

framework for the MWS but of encouraging studies about this topic, stripping 

us of conceptual uniqueness, and proposing an articulation vis-à-vis other 

perspectives to strengthen the discussion on modelling from the MWS. 

Generally, the modelling researches reported from the MWS are 

qualitative and empirical, focused on the interaction of the real world or other 

sciences with mathematical models. Also, several investigations are driven by 

the school context of French secondary education, highlighting the modelling 

cycle as a common aspect of learning, specifically in geometry and probability 

(Nechache, 2016, p. 52). In this regard, Nechache addresses this curricular 

aspect using software for geometric and probabilistic work, characterising the 

modelling practice for secondary school students. Likewise, Lagrange (2015, 

p. 317) uses the modelling cycle of the “Casyopée” equipment for dynamic 

geometry, studying extensions of research towards the modelling of physical 

problems so that specific types of mathematical functions acquire the sense of 

solving such problems. 

Rauscher and Adjiage (2014) analyse through the MWS the work of 

solving the problem of the giant –similar to the classic shoe task of Blum and 

Borromeo-Ferri (2009), through an experiment conducted with students aged 

10-11 years. The authors affirm the need to experiment with a modelling 

process to solve the problem and that this is not an actual research problem for 

an expert. Despite this, the problem is adequate to develop mathematical 

thinking from this research for the students who do not have a well-established 

reference. 

Derouet’s doctoral work (2016, p.228-231) proposes a discussion 

regarding modelling cycles, referring to the cycles proposed by Kaiser (1995), 

Blum (1996), Blum and Leiß (2007), Coulange (1998) and Henry (2001). The 

author emphasises that the last two works use the pseudo-concrete domain as 

part of a mathematical domain but situated in another paradigm and the idea of 

distinguishing between reality and mathematics and considering the choices 

made regarding the model in reality. Likewise, the author states that, contrary 

to the Blum cycle (Blum & Leiß, 2007), all the stages proposed by Henry 

(2001) do not have the same status, for they are characterised as actions or 

states, which is why the author decides to work with the Blum cycle (Blum & 

Leiß, 2007).  

One work of the MWS, which addresses different modelling 

approaches, is that of Nechache (2018). The author states that the resolution of 

probabilistic tasks in the context of French secondary education requires the 
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construction of models involving the implementation of different stages of the 

process. In addition, it induces uses or changes of probabilistic paradigms 

(Parzysz, 2011) and domains (Montoya-Delgadillo & Vivier, 2014). In 

conceptual terms, the author describes a modelling cycle adapted to the 

probabilistic domain (Nechache, 2016) based on the approaches by Kaiser 

(1995), Blum and Leiß (2007) and Borromeo-Ferri (2006). Moreover, the 

author adapts three fundamental stages of the cycle by Henry (1999): 

description of reality, mathematisation, and external validation. In addition, for 

the first stage of the cycle, it is observed that it is necessary to make hypotheses 

based on the probabilistic domain and, therefore, the author makes the MWS 

of reference of said domain intervene prior to the construction of the 

mathematical model. In this sense, the MWS may be present in the different 

modelling stages, not only since the model exists; thus, we believe it is 

necessary to consider other theoretical modelling approaches. 

 

Complementarity between the MWS and the Blomhøj modelling 

cycle 

In this section, we will try to approach a complementarity of both 

theoretical constructs, MWS and the Blomhøj cycle, without intending it to be 

a definitive discussion, but rather with the idea of expanding it, including other 

scopes of modelling in the MWS. To do this, we draw from the premise that 

there are similarities associated with the theoretical knowledge, the experience, 

and the valuation of data (see Fig. 2) since, based on the conceptualisation of 

signs, it is possible to begin to characterise the relationships with the MWS. 

Next, we describe a way to relate each sub-process, shown in Fig. 2, with the 

components of the MWS, shown in Fig. 1. 

In sub-process (a), problem formulation, the islands theory, experience, 

or data would intervene (see Fig. 2), which does not necessarily imply 

mathematical work. In sub-process (b), systematisation, the theory relating to 

the problem domain comes directly into play to formulate assumptions and 

identify variables and their possible relationships. It would explicitly or 

implicitly produce a circulation or development of reasoning in the vertical 

plane Sem-Ins (see Fig. 1). Process (c), mathematisation, corresponds to the 

development of a mathematical model through which the identified variables 

are constructed. Such construction uses the assumptions and relationships of 

the previous step, activating various components and the genesis of the MWS. 

Specifically, the circulation in the vertical plane Sem-Ins (see Fig.1) for 

interpreting and constructing signs and their relationships, together with the 
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corresponding components of the epistemological plane, explicitly activating a 

mathematical reference. In process (d), analysis of the mathematical system, 

the results are determined possibly using the simulation and proof (for example, 

of existence and uniqueness of analytical and approximate solutions of the 

model). It activates the circulation in the vertical plane Ins-Dis to construct the 

results and the possible (instrumented or not) demonstrations. In process (e), 

interpretation and evaluation, a circulation is positioned in the vertical plane 

Sem-Ins. For example, visualisation and construction emanating from the 

representamen, such as a graph or table of results, could lead to questioning the 

process (b). The results are evaluated by comparing them with data or with 

experience, which could be related to the discursive genesis or algorithmic 

processes, activating the instrumental genesis. Finally, the validation process 

(f), closely related to the previous process, would have the same connection 

with the MWS. 

Given the background and the previous theoretical study on the 

complementarity of the Blomhøj cycle with the MWS, we think this could 

expand the analysis of modelling tasks. Therefore, we consider the previous 

study to investigate the activity of solving a modelling task, which will be 

presented in the methodology, to try to answer the question: How is modelling 

activity characterised from the MWS when interpreted through the Blomhøj 

cycle in engineering students? 

 

METHODOLOGY 

This research considered two methodological aspects: first, the design 

of a task based on a modelling problem with a progressive level of complexity 

since it comes from the real world, demanding a high cognitive capacity for its 

mathematical formulation. It is about an actual research problem, an issue 

mentioned as desirable for modelling tasks at the ETM6 symposium (Montoya-

Delgadillo et al., 2018) and highlighted in Blomhøj’s theoretical proposal 

(2004). The second methodological aspect consisted of a qualitative approach 

to characterise students’ mathematical work, delving into ideas and meanings 

of knowledge (Denzin & Lincoln, 2012). In this sense, the task acquires 

uniqueness and complexity, given the intention of understanding how 

circulations occur in the MWS during the modelling process, defining the 

experimental part of the research as an instrumental case study (Stake, 2007). 

In addition, triangulation between researchers was used to carry out an 

individualised data analysis to corroborate degrees of similarity, searching for 

agreement in the dissimilar analyses to increase internal research reliability. 
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Such a methodological design was feasible given the experience and training 

of at least two authors who performed such triangulation since they are 

specialists in mathematical didactics with publications in the area and 

experience in qualitative analysis. 

The proposed task has been catalogued as a modelling task by three 

scholars (professors and researchers) who have extensive university teaching 

experience and have taught calculus courses for over three years. These 

scholars point out that the type of “guided” task is commonly used in university 

education, given the high cognitive complexity its resolution requires from the 

students. In this sense, throughout Stewart’s textbook (2008), in force in the 

calculus programs, this modelling task type is encouraged as real problems, 

requesting a computerised resolution through software, assuming the student 

has access to it. In addition, this classic calculus textbook attaches great 

importance to models, seen as applications of functions, in particular, to the 

dynamics of population growth (sections 1.2, 1.4, 1.5-1.6, 2.8, 3.4, 3.7, 3.8, 4.3, 

4.9, 9.1, 9.4, 9.6, 11.1), the subject of the task proposed in this work. 

The experimentation consisted in requesting the written and personal 

task resolution of 31 second-year students of the career of civil computer 

engineering at a Chilean public university, collected at the end of a 90-minute 

session. For our study, we have selected an individual for our analysis, which 

we will call Juan, whose written production is sufficiently complete and of 

interest for a correct interpretation, both in the understanding of the 

mathematical work developed and in the deepening of the ideas. 

To reduce, organise, and give meaning to qualitative data, we have 

considered, according to Burns and Grove (2004), three stages of analysis of 

Juan’s written production: description, analysis, and interpretation. 

The task proposed to students is as follows: 
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Table 1. 

Modelling task. 

 

 

 

 

 

 

 

 

Table A. Population data 

The population has been ageing in the last 

three decades, and the birth rate has been 

progressively decreasing. The following 

table shows the evolution of the 

population between the years 1907 and 

2017, obtained from the information 

collected in the censuses carried out 

approximately every ten years 

(Compendio Estadístico/Statistical 

Compendium, 2018).  

The objective of this problem is to predict 

population growth from the year 2017 or 

to estimate it between the values measured 

in the censuses. For this, we will establish 

a general formula that models population 

growth as a function of time. We will start 

by analysing the simplest model of 

population growth. We will assume that: 

(H1) The relative population growth rate 

remains constant (independent of 

population size).  

(H2) Individuals reproduce only once over 

a given period (e.g., every decade to 

account for data availability).  

We will measure the time k in generation units (period between one generation and 

the next, for example, a decade). Let us denote by xk the number of individuals in 

the population in generation k so that xk+1 will designate the number of individuals 

in the population in the next generation, k+1. According to the assumption (H2), 

there is no population reproduction between the periods k and k + 1. Accordingly, 

the more general formula to describe population growth between k and k + 1 is of 

the following type:  

xk+1 = f(xk), for k = 0, 1, 2, . . . , (1) 

Where f is a function that determines the number of individuals in the period k + 1 

(xk+1) based on the number of individuals in the period k (xk). The relative growth 

rate of the population is used to find an appropriate expression for f. The first 
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consists of the difference between the number of individuals in the period k+1 and 

the amount in period k divided by the last (or the ratio of the number of individuals 

in period k + 1 and the amount in period k minus 1), i.e.: 

r k=
xk+1− xk

xk

=
xk+1

xk

− 1
(2) 

rk > 0 means that the population grows between the period k and k + 1; rk < 0 means 

that the population decreases between k and k + 1, while rk = 0 means that the 

population remained constant between k and k + 1. 

By finding an appropriate relationship between rk and xk, f can be obtained by 

clearing xk+1 as a function of xk from equation (2). The request:  

1 Calculate the relative population growth rate between two consecutive periods, 

i.e., calculate rk defined by (2). 

2 Calculate the average relative growth rate r from the rk.  

3 According to the assumption (H1), the simplest discrete mathematical model, 

given by equation (1) is obtained, assuming that the relative growth rate 

remains constant. Then, assuming this constant equals its mean r, set a formula 

for the function f by clearing xk+1 as a function of xk from equation (2).  

4 Based on the model found, determine the population growth in the periods 

tabulated in Table 1. To do this, the model begins with the initial population, 

x0= 3231022, corresponding to the population in 1907. Then, calculate 

successively x1, x2, ..., starting from x0, using the formula found in the previous 

item. 

5 To determine the quality of the model found, calculate the relative errors made 

when approximating the actual population size from the value obtained by the 

model. That is:  

|yk+1− xk+1|
yk+1 (3) 

where yk+1 corresponds to the actual population size in period k+1 and xk+1 is 

the population size predicted by the model in the period k+1. Also, calculate 

the average relative error. How good are the model’s approximations? 

6 Based on the proposed model, predict the population size determined in future 

censuses, assuming that these will be carried out every ten years. In how many 

more decades will the size of the population double compared to the size in the 

year 2017? 
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DATA ANALYSIS 

We divided analyses into two sections: the first consists of the task 

design, and the second of the student’s answers through the MWS in the 

different phases of the modelling. 

 

Analysis of the task design 

The task was designed (see table 1) so that the student could understand 

the general formulation of the proposed model and answer the questions. In this 

sense, the student should read the statement several times since calculus courses 

usually do not pay much attention to modelling tasks, as they focus on 

mathematical constructs dictated by the plans and programs. So, it would imply 

that the student would be facing a task with a high level of complexity 

(Cabassut & Ferrando, 2017). 

Likewise, since applying this type of task requires careful teacher’s 

guidance, the design of the statement included the following pieces of the 

modelling cycle. First, problem formulation follows from the paragraph before 

the two assumptions, including them (H1 and H2 in table 1). The 

systematisation is by the variables pre-defined (relative population growth rate) 

and relationships of interest for the problem’s research domain (the relation 

between the relative growth rate and the number of individuals in the 

population, table 1). Finally, part of the mathematisation is devoted to deducing 

the formulas (1) and (2) in table 1. The three previous steps would allow 

students to approach the proposed model. 

 

Description of the task 

The proposed area of research corresponds to population dynamics, one 

of the main objects of study of mathematical biology. As the problem is 

formulated from a discrete model for a single variable (equation (1) in table 1), 

the mathematical domain is within the real analysis. It is up to the student to 

establish the system or mathematical model, i.e., the final part of the 

mathematisation, guided along the statement until reaching question 3. The 

model equation has to be obtained using both assumptions, mainly guided by 

H1 (table 1), requesting the student to previously estimate the average relative 

growth rate (question 2 in table 1). It constitutes a preliminary calculation to 

establish the model, considering that this variable is constant and equal to its 

average (question 3 in table 1). Next, the task proposes the calculation of 
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population estimates (question 4 in table 1), a stage of mathematical analysis. 

It leads to the model results and then to interpret/evaluate the results through 

the average relative error to advise the model’s validity in quantitative form, 

establishing margins of precision in the predictive calculations required by the 

task (question 5 in table 1). For the above, the statement provides a table of data 

on the Chilean population measured in the censuses throughout the period 

1907-2017, extracted from the website of the Instituto Nacional de Estadística 

[National Institute of Statistics]. As a central island of the Blomhøj cycle (see 

Fig. 2), data may come from the modelling task and be used in the stages of 

systematisation and mathematisation, both for model construction and 

validation. In this sense, an eventual task whose goal would be formulating the 

same problem, with a research domain to discover, should guide the 

characteristics of perceived reality to model. That could be achieved, for 

example, through a (semi-logarithmic) graph of the data to visualise population 

growth, which could guide model construction.  

 

Analysis of the task resolution 

Despite students correctly answering questions 1 and 2, we noticed 

difficulty in specifying a formula for the model in question 3 (equations (1)-(2) 

combined with H1 and statement in question 3, see table 1). That could be by 

confusion of assumption H1 with reality, i.e., instead of calculating the relative 

growth rates in each period (question 1), they only calculated it in the first or 

subsequent period. Then, they limited themselves to saying that, given that it 

remained constant, its value was equal to the one they calculated in the period 

1=k  or 0k=k (for a fixed 0k ), from which model results do not fit actual 

data. Indeed, most students (23 out of 31) mistakenly assumed that 
0

kk r=r  

instead of r=rk , explicitly denoting that c=rk , where c is the value of the 

relative growth rate in some fixed period, k0, arbitrarily chosen. A particular 

case that features this mistake is shown in Figure 3. 
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Figure 3 

Confusion of assumption H1 with actual growth rate values 

 

 

This error was foreseeable, given the students’ inexperience in this task 

type and, above all, because of the high cognitive requirement, which 

constitutes an actual research problem. 

 

Figure 4 

Juan’s answer to question 1. 

 

 

Figure 5 

Juan’s answer to questions 1 and 2. 
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As announced in the methodology, we focused the analyses on Juan’s 

answers, representing the portion of students who answered correctly; see 

Figures 4-5. 

 

Analysis and interpretation  

Questions 1 and 2 (Figure 5) require a large margin of manoeuvre, since 

the relative growth rates rk and their average r must be calculated. It should be 

by latent semiotic participation, in the sense of understanding the concepts 

involved in these notations, which could be considered a connector between the 

theories of Blomhøj and the MWS since reality is idealised by variables or signs 

in the systematisation stage. From the answers to questions 1 and 2, we infer an 

activation of the semiotic genesis since it is necessary to interpret the meaning 

of the algebraic signs r and rk. In addition, instrumental genesis is activated to 

construct and visualise the concepts they represent (relative growth rates and 

their average). So, there was circulation in the vertical plane Sem-Ins to 

configure the conceptualisation and understanding of involved notions. The 

numerical tabulation, without necessarily a validation objective, explains and 

identifies the components through the semiotic representation mentioned 

above. The answers are positioned in the GA paradigm, for they involve work 

of a perceptual type based on numerical tabulation, which encourages the 

understanding of concepts and allows for interpretations based on the real 

world, thus connecting the model with the reality of the problem studied. The 

previous analysis shows a connection between the circulation in the vertical 

plane Sem-Ins of the MWS with the systematisation and mathematisation 

phases of the Blomhøj cycle. 

Despite the task difficulty and the fact that most students did not get 

the correct answer, Juan’s group managed to answer what was requested; see 

Figure 6. 

The fact that the task was guided along the statement allowed a better 

understanding of students who obtained the model. In this regard, question 3 

invites assuming, apart from H1 and H2, that the relative growth rate is constant 

and equal to its average (Fig. 6). We interpret it as a possible connection 

between the MWS’s epistemological plane (Fig. 1) and the Blomhøj modelling 

cycle centre (Fig. 2). In particular, between theoretical knowledge (referential) 

with the data and theory of the research domain. In addition, the student would 

have to decipher a theoretical assumption of the research domain of the real 

problem. Then, he should translate it by a mathematical work positioned in the 
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GA paradigm. Also, it requires activating circulations in the vertical plane Sem-

Ins to achieve interpretation and construction of the assumption to be able to 

mathematise it. 

 

Figure 6 

Juan’s answer in item 3 

 

 

Then, the student calculated the estimates requested in question 4, 

presenting a tabulation of population sizes calculated from the model. In 

addition, although it was not asked, he made a freehand drawing of a graph, 

considered an instrumental artefact. Again, it emphasises reasoning in the 

vertical plane Sem-Ins and work in the GA paradigm because the construction 

favours visualisation and interpretation of the results. Although the graph did 

not provide an ideal visualisation, it is a good approximation since it is possible 

to see that the actual and simulated growth curves are relatively similar (Fig. 

7), giving meaning and usefulness to the model application. 

The calculations in question 4 are an essential part of the mathematical 

analysis of the Blomhøj cycle, an aspect that we consider fundamental to 

connect the real world with the mathematical work of the student, i.e., with his 

personal MWS. This connection, in turn, makes it possible to establish that the 

population will double in approximately four more decades, an inference based 

on the results, another important aspect of the cycle. 

Regarding the epistemological plane, diverse representamens or 

semiotic representation registers are used (data table, assumptions formulation, 

variables, and model’s general formula). Reference MWS was based on 

mathematical work in the real analysis field to get results. In particular, it relied 
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on arithmetic calculations and experimental validations by graphical-arithmetic 

records of the model (Figs. 3-7). On the other hand, the relative errors of 

approximation of the model to the data were calculated. Also, experimental 

validation (stage of interpretation/evaluation and validation of the model) and 

predictions were determined (action-vision). In summary, throughout the 

student’s answers, we identified a work positioned in the GA paradigm, 

alongside reasoning in the vertical plane Sem-Ins, given that interpretations are 

favoured through a work instrumented from graphical-numeric records. 

 

Figure 7 

Estimates of the population based on the model 

 

 

Concerning the cognitive plane, the student had to develop 

visualisation and construction to interpret and decipher the signs. Thus, he 

could internally structure the information provided, particularly the object 

representation (model’s recurrence formula, relative growth rate, and 

population size) and the relationships involved (model’s general equation and 

the relative growth rate). Then, he achieves a formula for the discrete 

exponential model (mathematisation and obtaining the mathematical system). 

Additionally, the student had to develop the construction to calculate the 

estimates/results based on the model (mathematical analysis), i.e., the student 

activates reasoning in the vertical plane Sem-Ins, as discussed before. Finally, 

theoretical development is unavoidable, given the existing theory behind the 

model, which contributes to the understanding of population dynamics. Despite 

no deductive rationale being applied to obtain either an analytical solution or 

long-term asymptotic behaviour (convergence/divergence of the model’s 

solution) when computing the prediction of the doubling time for the 
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population, one could consider it as empirical proof of this behaviour. In this 

sense, the above interaction in the transit per cycle can be observed, mainly 

through interpretation/evaluation and validation. 

 

Figure 8 

The Connection between the Blomhøj cycle and the MWS. 

 

 

Based on figure 8, in summary: 

1 The problem formulation might develop the mathematical work 

since it considers the data and theory located at the Blomhøj cycle 

centre. 

A The data and the referential connect with the epistemological plane 

of the MWS. Through mathematisation, it can be connected to the 

cognitive plane. 

B The notions involved are possible connectors with the 

representamen and visualisation. 

C The instrumental genesis activates from the data analysis (centre of 

Blomhøj’s cycle). 
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D From the (pragmatic) test, according to Balacheff, carried out by 

the student, interpretation and validation would follow, thus 

connecting this way to the Blomhøj cycle.  

We consider A) and 1) (Fig. 1) two possible connections between the 

Blomhøj cycle and the MWS, where a student’s mathematical work can be 

developed and then reconnected to the Blomhøj process in D). 

We observe that C) has possible similarities with d) of the Blomhøj 

cycle since mathematical analysis is developed when the instrumental genesis 

is activated. In particular, one can observe it in Juan’s table, used as an 

instrumental artefact (Fig. 7), to then rely on it in constructing the graph. 

 

CONCLUSIONS 

In this work, we have proposed to complement the MWS theory with 

the Blomhøj modelling cycle, identifying the connections between both 

theoretical frameworks, in an investigation that intends to expand the 

discussion of modelling from the MWS. To test this intersection, we designed 

a modelling task based on an actual problem, a desirable aspect expressed in 

the sixth symposium on the mathematical work, ETM6. Given the high 

cognitive requirement to solve it, the task design considered a statement 

composed of different questions that included problem formulation, 

systematisation, and part of the mathematisation. 

The analysis of the task resolution showed that some students presented 

difficulties since they were not used to working with models in university and 

because of the intrinsic difficulty of the problem. In particular, the most critical 

difficulty found is that they confuse reality with mathematics, suggesting that 

it is necessary to distinguish data from mathematisation properly. However, the 

analysis also shows that a portion of the students could develop a mathematical 

model consistent with the task design, guided by considering the aspects above. 

Concerning the intersection of the Blomhøj cycle with the MWS, we 

observed that some circulations are favoured through the mathematical work 

between various components of the epistemological and cognitive plane 

(representamen-visualisation, artefacts-construction), developing, 

fundamentally, reasoning in the vertical plane Sem-Ins. It was provided by the 

exploratory approach through the interpretation, construction and validation of 

the assumptions and model results, favouring a work positioned in the GA 

paradigm, i.e., of a perceptual type based on the abovementioned approaches. 
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It could be due to the task design, which did not consider making 

demonstrations or using analytical calculation rules. It would have led to a work 

located in the other paradigms of real analysis and to the development of 

reasoning in the different vertical planes of the MWS. 

One of the main contributions of this research is that the results suggest 

that the Blomhøj cycle may present theoretical connections with the MWS. The 

first would be from the formulation of the real problem, as this process leads to 

having to choose the field within the mathematics where the problem is going 

to be framed visualising the beginnings of an eventual mathematisation that is 

not only referred to in a purely mathematical environment, but that affects 

reality. This could be a first entry to the MWS through the referential, which 

must be chosen through this process. In addition, systematisation would 

directly connect with the MWS since it leads to the selection of relevant objects, 

relationships, and idealisation to make the mathematical representation, which 

would be made explicit at this stage. All other cycle processes are directly 

related to the MWS (mathematisation, mathematical analysis, 

interpretation/evaluation and validation). On the other hand, we believe that the 

central islands in the Blomhøj cycle (data, experience and theory) are closely 

related to the MWS, as these aspects might contribute to the mathematical work 

involved in establishing or validating the model. 

Finally, in this case, the working paradigms concerning the underlying 

mathematical field begin to make themselves evident from the mathematisation 

process since it is where the referential is made more explicit. However, we 

must recognise that, depending on the problem, these could manifest 

themselves before, precisely, when the problem is formulated through 

assumptions and mathematical variables. In this sense, to address the proposed 

problem, it has been necessary to make some decisions on the variables to be 

considered. In terms of Blomhøj (2003), this relates to selecting relevant objects 

and idealising variables to make mathematical representation possible. 

Precisely, in choosing and idealising variables, we believe that the relationship 

with the MWS would occur from the systematisation and possibly from the 

formulation because, as already mentioned, we would be choosing the 

mathematical field where the model is formulated. 
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