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RESUMEN 
Contexto: En el análisis de los saberes geométricos propuestos en el currículo 

de Educación Secundaria se manifiestan fenómenos como la separación entre las 

geometrías 2D y 3D y el debilitamiento de la actividad de modelización en geometría. 

Brousseau considera que la construcción de figuras es un primer ejemplo de 

modelización geométrica. Objetivos: Construir un modelo epistemológico de 
referencia que explicita las condiciones que permiten determinar la forma y el tamaño 

de un sólido y buscar qué posibles técnicas permiten construirlo. Metodología: 

Investigación teórica en el marco de la Teoría Antropológica de lo Didáctico. Entorno 

y participantes: El modelo construido es fruto de varios trabajos realizados en los tres 

últimos años: análisis de textos escolares y diseño, implementación y análisis de un 

recorrido de estudio e investigación en torno al diseño de un envase en dos Institutos 

de Educación Secundaria con alumnos de entre 14 y 17 años. Recogida y análisis de 

datos: El modelo está basado en el análisis de informaciones recogidas de textos 

científicos de Pólya y otros autores, de textos oficiales y manuales escolares de 

Educación Secundaria y de las experimentaciones realizadas. Resultados: El modelo 

sustenta el estudio articulado de las geometrías bidimensional y tridimensional y 
permite guiar procesos de estudio tendentes a abordar de manera coherente el problema 

de la determinación de un sólido y su construcción. Conclusiones: El modelo elaborado 

contiene cuestiones sobre la problemática de la modelización espacio-geométrica que 

consideramos como la problemática de iniciación a la geometría en la enseñanza 

secundaria. 
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A reference epistemological model concerning the determination and 

construction of solids for compulsory secondary education  

 

ABSTRACT 

Background: The analysis of the geometric knowledge presented in the 

secondary education curriculum reveals phenomena such as the separation between 2D 

and 3D geometry and the weakening of the modelling activity in geometry. Brousseau 

considers that the construction of figures is a first example of geometrical modelling. 

Objectives: To build a reference epistemological model that clearly sets out the 

conditions that allow determining the shape and size of a solid and looking for possible 
techniques that enable constructing it. Design: theoretical research within the 

framework of the Anthropological Theory of the Didactic. Setting and participants: 

The model built is the result of several activities carried out in the last three years: an 

analysis of school texts, and the design, implementation, and analysis of a study and 

research path regarding the design of a container in two secondary schools with students 

aged between 14 and 17. Data collection and analysis: The model is based on the 

analysis of information collected from scientific texts by Pólya and other authors, from 

official texts and secondary education textbooks, and from the experiments carried out. 

Results: The model is based on the structured study of two- and three-dimensional 

geometry and allows guiding study processes aimed at consistently addressing the 

problem of determining a solid and its construction. Conclusions: The model 

developed includes questions regarding spatial-geometric modelling considered to be 
central in the introduction to geometry in secondary education. 

Keywords: Reference epistemological model; Determination and 

construction of solids; Spatial problem; Spatial-geometric modelling; Algebraic-

functional techniques 
 

Um modelo epistemológico de referência em torno à determinação e construção 

de sólidos para o ensino secundário obrigatório 

 

RESUMO 

Contexto: Na análise dos conhecimentos geométricos propostos no currículo 

do Ensino secundário, fenômenos como a separação entre geometria 2D e 3D e o 

debilitamento da atividade de modelagem em geometria são evidentes. Brousseau 

considera que a construção de figuras é um primeiro exemplo de modelagem 

geométrica. Objetivos: Construir um modelo de referência epistemológico que 

explicite as condições que permitem determinar a forma e o tamanho de um sólido e 
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descobrir que técnicas possíveis tornam possível a sua construção. Metodologia: 

Investigação teórica no âmbito da Teoria Antropológica da Didática. Ambiente e 

participantes: O modelo construído é o resultado de vários trabalhos realizados nos 

últimos três anos: análise de textos escolares e concepção, implementação e análise de 

um percurso de estudo e investigação em torno do desenho de uma embalagem em duas 

Escolas Secundárias com alunos entre os 14 e os 17 anos de idade. Recolha e análise 

de dados: O modelo é baseado na análise de informações coletadas de textos científicos 

de Pólya e outros autores, de textos oficiais e manuais escolares do Ensino Secundário 

e das experiências realizadas. Resultados: O modelo apoia o estudo articulado de 

geometrias bidimensionais e tridimensionais e permite orientar processos de estudo 
tendentes a abordar de forma coerente o problema da determinação de um sólido e da 

sua construção. Conclusões: O modelo desenvolvido contém questões sobre o 

problema da modelagem espacial-geométrica que consideramos ser o problema da 

iniciação à geometria no ensino secundário. 

Palavras-chave: Modelo epistemológico de referência; Determinação e 

construção de sólidos; Problema espacial; Modelagem espaço-geométrica; Técnicas 

algébrico-funcionais. 

 

INTRODUCTION AND BACKGROUND 

The new official Spanish curriculum, which has just been promulgated, 

considers that one of the basic knowledge areas to be taught is spatial sense. 
The document published (MEFP, 2022, p. 156, our translation) clearly sets out 

that: 

Spatial sense addresses the understanding of the geometric 

aspects of our world. Registering and representing shapes and 
figures, recognising their properties, identifying relationships 

between them, locating them, describing their movements, 

making or discovering images of them, classifying them, and 
reasoning with them are key elements of teaching and learning 

geometry. 

In the official French curriculum (Eduscol, 2020), in theme D on Space 
and Geometry, recognising, building, and representing solids is put forward as 

an objective by the end of cycle 4, which includes secondary education students 

aged between 12 and 15. The use of dynamic geometry software for said 

representation is also contemplated. 

Guy Brousseau (2000) points out that the construction of figures is a 

first example of modelling a part of elementary geometry, and Perrin-Glorian 

and Godin (2014) consider that plane geometry consists in the study of flat 
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shapes and figures. Perrin-Glorian, Mathé & Leclerc (2013) indicate that in 

order to achieve coherent and functional teaching of geometry in compulsory 

education, it is necessary to use what Berthelot & Salin (2005) call space 
modelling problems or spatial-geometric problems. Thus, if we consider 

geometry as a model of physical space, it turns out that the notion of model is 

inseparable from the study of geometry (Houdement, 2019). Salin (2014) states 
that geometric knowledge should be introduced as a tool for solving spatial 

problems, that is, within a spatial-geometric modelling problem. 

We postulate that a possible raison d'être of the study of elementary 
geometry in the case of three-dimensional geometry basically consists in the 

study of the determination and construction of solids. 

Furthermore, the search for possible answers to this spatial problem 

using algebraic-functional modelling techniques will be improved thanks to the 
use of GeoGebra. It will allow the study of 3D geometry to be connected with 

that of algebra and functions, as put forward by the Spanish Committee for 

Mathematics: 

More attention should be paid in the curriculum to: using 

dynamic geometry programmes to work on geometry, relating 
geometry to algebra and functions, and solving problems 

(CEMAT, 2021, p. 34). 

Rojas and Sierra (2021a; 2021b) enquired about the raisons d’être the 
study of geometry in secondary education should respond to, particularly two-

dimensional (2D) and three-dimensional (3D) geometry and developed and 

implemented two study and research paths (SRPs) regarding the design and 
construction of a container. These SRPs enabled studying several geometric 

knowledge areas put forward in the curriculum of Compulsory Secondary 

Education (ESO in Spanish). 

One of the most important tasks of the secondary education 
mathematics teacher consists in designing and implementing study processes 

in the classroom related to a certain mathematical organisation (MO) proposed 

in the curriculum (Chevallard, 2002). The Anthropological Theory of the 
Didactic (TAD) considers it is important for teachers to question themselves 

about the knowledge to be taught and to enquire about some of its possible 

raisons d’être. However, finding some of the questions to which geometrical 
knowledge responds constitutes a complex task that teachers alone can hardly 

address, since it appears as an open didactic research problem. 
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Sierra, Bosch and Gascón (2007) showed that the didactic tasks 

teachers should implement together with their students to reconstruct an MO, 

the didactic techniques used to develop those tasks, and the technological-
theoretical discourse that allows them to interpret and justify those techniques, 

mainly depend on the structure of the “mathematical” components and on the 

raison d'être assigned to said MO. 

One of the objectives of this study, apart from providing some of the 

raisons d’être for school geometry in compulsory secondary education offering 

a possible connection between 2D and 3D geometry and with other basic 
knowledge such as algebra and functions, is to set out and develop a proposal 

that clarifies what is understood by determining and constructing solids. 

When researchers in didactics of mathematics intend to carry out the 

praxeological analysis of an MO, they should take into account the empirical 
data from the different stages of the didactic transposition process. To do this, 

they should develop their own “reference” epistemological model allowing 

them to avoid the restrictions that come from the different institutions in which 

this MO exists (Figure 1). 

 

Figure 1 

The different institutions of the didactic transposition process of an MO. 

 

 

To build this reference epistemological model (REM), the researcher 
should develop a rational reconstruction of the MO in question. The didactic 

analysis of the didactic transposition process to which this MO is subjected will 

enable detecting some of the didactic phenomena present in the process (Bosch 

& Gascón, 2005). 

In this study, we present a possible reconstruction of an MO regarding 

the determination and construction of solids for compulsory secondary 

education based on the search for possible solutions to a spatial problem related 
to designing and building a container. This reconstruction, which performs the 

function of an REM, will be elaborated through a spatial-geometric modelling 
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process. An interpretation of the elementary geometry of solids that assigns a 

new raison d'être to its study will hence be obtained. It is an alternative to the 

one established by the dominant epistemological model in compulsory 
secondary education. On the one hand, this reconstruction helps us tackle the 

didactic phenomenon of the separation between 2D and 3D geometry. On the 

other hand, it guides the design, experiment and analysis of future SRPs to 
connect specific techniques of spatial-geometric modelling with algebraic-

functional models in compulsory secondary education. 

In what follows, using the perspective of the ATD: (1) the theoretical 
framework, in which the general characteristics of REMs are explained, will be 

described; (2) the general lines of our research problem will be presented; (3) 

an REM regarding the determination and construction of solids based on the 

search for possible solutions, through spatial-geometric modelling, to the 
spatial problem involved in the design and construction of a container will be 

presented; and (4) some conclusions about the epistemological and didactic 

functions of the REM built will be formulated. 

 

THEORETICAL FRAMEWORK AND GENERAL 

CHARACTERISTICS OF REMs  

According to the heuristic scheme presented by Gascón (2011), any 

didactic-mathematical problem defined using the ATD tools usually starts from 
a teaching problem considered incomplete, to which “it is necessary to at least 

add the epistemological dimension for it to be considered as a problem” (p. 

206). Said dimension turns into an REM that constitutes a scientific hypothesis 

on which to define the MOs involved in the didactic problem being defined. It 

will thus be possible to establish: 

[…] the most appropriate scope of the mathematical field to 

pose the didactic problem in question. […] The didactic 
phenomena that will be visible to the researcher. […] The types 

of research problems that may be posed […] [and] the tentative 

explanations that may be proposed. (Gascón, 2011, p. 209). 

This REM may be formulated in terms of questions and answers that 
lead to the construction of a relatively complete MO (Fonseca, 2004), built from 

a series of additions and completions derived from a specific MO. In other 

words, through a process that starts from a specific type of task carried out using 
a specific technique, and that can give rise to successively broader and more 
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complex (local, regional and global) mathematical praxeologies (Chevallard, 

1999). Let us remember that mathematical organisations or praxeologies: 

[…] are made up of a practical block or “know-how” composed 

of the types of tasks and techniques [/], and a theoretical 
block or “knowing” made up of the technological-theoretical 

discourse [/] that describes, explains, and justifies the 

practice (Bosch et al., 2004, p. 211). 

It should be noted that the components of a mathematical praxeology 

or MO (types of tasks, techniques, technologies, and theories) concern the 
reference institution, in our case the compulsory secondary education 

institution. Therefore, “what is considered a type of tasks (or a technique, 

technology, or theory) in one institution is not necessarily the case in another 

institution” (Bosch et al., 2004, p. 212). 

This study is limited to studying and developing the epistemological 

dimension of the didactic problem or of didactic research we explain below. It 

consists of the construction of an REM considered as a provisional model or 
hypothesis we rely on to interpret and describe a certain field of mathematics 

and to “use it as a reference to analyse the didactic-mathematical facts” (Gascón, 

2011, p. 208).  

To build the REM, inspiration was drawn from: 1) the works on the 

MO already developed in the texts of scholarly knowledge, related to 

mathematics and other scientific disciplines; 2) the official curriculum 
documents related to the MO under study; 3) the proposals of didactic 

organisations (DOs) that appear in school textbooks with regard to this MO; 4) 

the possibilities offered by geometric modelling software such as GeoGebra; 

and 5) the conditions and restrictions that may arise in school institutions in 

which the MO in question is considered as an MO “to be taught”. 

It needs to be said that the REM explained here is, like all REMs: 

• a provisional model, that is, a hypothesis subject to possible 

permanent changes to be contrasted with experimental data, and 

• a relative model, developed by the researcher in didactics for 

specific and limited purposes. 
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RESEARCH PROBLEM  

The first explorations that led us to define this research were based on 
the analysis of some of the textbooks proposed for teaching mathematics in 

compulsory secondary education (Rojas & Sierra, 2017). This analysis revealed 

the general didactic phenomenon of the disappearance of the raisons d’être of 
the geometric knowledge put forward in the curriculum. The ATD has dealt 

with  facts related to this general phenomenon, such as the rigidity of the MOs 

studied in secondary school (Fonseca, 2004), or the lack of justifying the 

appearance of analytical geometry in upper secondary education, and its 
disconnection with the study of synthetic geometry presented in compulsory 

secondary education (Gascón, 2003). 

The following are some specific facts that underline this general 

didactic phenomenon in the analysis performed: 

• The fragmented view of school textbooks on the mathematical 

knowledge proposed, since, for example, the study of functions and 

the calculation of areas and volumes of solids, tend to appear 

disconnected. 

• The almost exclusively numerical treatment of the formulas used 

to calculate areas and volumes of solids, as, in most cases, it is 

enough to substitute their elements for specific values provided to 

find the numerical value of a certain magnitude. 

• The types of tasks proposed mainly consist of direct tasks (the 
quantities and unknowns of a problem are never interchanged to 

formulate inverse tasks), and closed tasks (there are no open tasks 

that require the student to decide which variables are relevant to 

solve the problem). 

• A repetitive cyclical relationship is observed between types of tasks 

and associated techniques. For instance, to explain and justify the 

use of the Pythagorean theorem, problems involving right triangles 
are presented. Their resolution requires calculating the measure of 

one of the sides, where the tool, which has previously been 

explained to solve such situations, is precisely the use of the 

theorem. 

The REM explained in this article allows characterising a certain MO 

used in compulsory secondary education geometry as well as the existence of 

didactic phenomena such as the separation between 2D and 3D geometry, and 
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the weakening of the modelling activity in the field of geometry (Rojas & Sierra, 

2021b). 

In line with the above, the research problem addressed in this study 
consists of clearly setting out the conditions that allow determining the shape 

and size of a solid and, once this solid is determined, looking for the possible 

techniques that can be used to build it. This general problem, which we call 
determination and construction of solids, starts from the search for the solution 

to a type of spatial problem (Salin, 2004), which consists of designing and 

building a container, addressed within a spatial-geometric modelling approach.  

The spatial-geometric modelling problem proposed by Berthelot and 

Salin (1992) starts from a system in which a type of spatial problem arises. To 

solve it, an appropriate mathematical model is developed that represents this 

system using any kind of (geometric, arithmetic, algebraic, functional, etc.) 
mathematical element. In this model, the answers obtained are validated in the 

physical space, according to Brousseau’s proposal of considering the study of 

geometry as a model of space (Berthelot & Salin, 2001). 

 Carrying out this process in teaching is highly interesting, since it 

allows considering the relationship between physical space and geometric 

space, taking into account the experimental dimension of geometry. This 
approach enables conducting a consistent study of geometry throughout 

compulsory secondary education, where both types of spaces need to be 

considered and properly connected. Within the spatial sense in the first three 

years of compulsory secondary education the study of the following is 

considered: 

“1. Two- and three-dimensional geometric figures … 

Construction of geometric figures using manipulatives and 

digital tools (dynamic geometry programmes, augmented 

reality…)” (MEFP, 2022, p. 163). 

The REM here described is the result of the contributions developed in 

several activities carried out in the past three years. First, we created and 

implemented an SRP for the design of a container on two different occasions in 

two secondary schools:  

• firstly, with 4th year compulsory secondary education students 

(aged 15 to 16) and 1st year upper secondary education students 

(aged 16 to 17) during extra-curricular hours (Rojas & Sierra, 

2021a), and  
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• secondly, with 3rd year compulsory secondary education students 

(aged 14 to 15) during an elective subject called “Mathematics 

extension”. 

As part of the research developed, the conditions required for this type 
of modelling to exists in compulsory secondary education have been analysed 

and studied in Rojas and Sierra (2021b). 

 

AN REM REGARDING THE DETERMINATION AND 

CONSTRUCTION OF SOLIDS 

To build the REM, a generating question, deemed sufficiently relevant 

and fruitful, was considered with regard to the spatial problem of designing and 

building a container. We believe this problem can be modelled geometrically, 
thus giving rise to a possible connection between 2D and 3D geometry and the 

use of algebraic and functional models. 

The problem was previously considered in the two study processes 

implemented, and it was endorsed by the scientific community of experts in 
didactics of mathematics, as may be verified in Rojas and Sierra (2020, 2021a 

and 2021b). We will show that this spatial problem can lead to both spatial-

geometric modelling and to the use of algebraic-functional models. 

The generating question of the REM is the following: 

QG = How to design and build a suitable container that has a 

predetermined capacity or volume? 

Answering this question implies asking oneself, amongst other things, 

what the condition of being suitable means. It is related to the function the 

container has to fulfil and, presumably, to its shape. For instance, if the 

container is aimed to hold a liquid substance, surely it should respond to certain 
needs that are different to those of a container designed to contain a solid 

product. Actually, a broad classification within these two types of containers 

could be made, since the liquid to be packaged may or may not contain gas, or, 
if it is a solid product, it could consist of one or of numerous pieces, as is the 

case of grainy material. 

The condition of being suitable is not absolute, and less so in the 

problem at hand, since the most suitable container could be, for example, the 
one that is the most visually attractive to the consumer, even if this means an 

increase in manufacturing costs, or a greater environmental impact. Therefore, 
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designing and building a suitable container implies new questions about (a) its 

function, (b) the material it will be manufactured with and its optimisation, (c) 

the environmental impact its use can cause, and (d) the use of space, for instance, 
during stacking for storage and transport, amongst other aspects. In other words, 

designing and building a suitable container means taking into account several 

factors that have different levels of importance, which surely involve the use of 
knowledge from different sectors of mathematics such as geometry, arithmetic, 

algebra, etc., as well as knowledge from other disciplines such as chemistry, 

biology, marketing, etc. 

With respect to the knowledge that could be useful to respond to QG, 

we decided to start from the review of some of the guides on the design of 

containers and packaging currently available on the Internet, such as Navarro 

et al. (2007), Bertomeu-Camós and Fortuny Cuadra (2016), and Ihobe S.A. and 
Ecoembes (2017), which can help us in the search for an answer to the 

generating question. 

These guides present a wide range of conditions that should be taken 
into account when designing a container, such as the fact that the design should 

be doable, desirable, and sustainable. That is, it should be possible to 

manufacture and should be profitable, it should respond to consumer needs, and 
the use of resources should be optimised, while reducing its environmental 

impact. This certainly configures a complex spatial problem including multiple 

variables, amongst which the shape of the container, its size, and its 

composition need to be mentioned. However, for now, we will only include the 
variables that are related to the condition of being suitable, and those that may 

involve the implementation of several of the geometric knowledge areas 

proposed to be taught in the new compulsory secondary education curriculum 
(MEFP, 2022). Thus, when seeking an answer to QG, the issues mentioned 

below will not be addressed: 

a. the type of material the container is made of  

b. the type of product the container will hold  

c. marketing related to the product to be packaged 

Eco-design packaging considers a system of three types of packaging: 

primary or consumer packaging, secondary or grouped packaging, and tertiary 
or transit packaging. Our focus is on designing and building a primary type 

container, since the other two types usually have orthohedral shapes, and 

determining and constructing orthohedral solids is amongst the easiest, and 
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therefore reduces the possibilities of developing the spatial-geometric 

modelling activity and its relationship with algebraic-functional models. 

It is important to note that, although it is clear there is a difference 
between the container (packaging) and the content (the material the container 

holds), the problem of designing and building a container will be limited in our 

study to the case of a container holding liquid. Therefore, and considering the 
ideal case in which the liquid completely fills the container, we assume that 

calculating the capacity of the container is equivalent to calculating the volume 

of the solid associated with the shape its content adopts. On the other hand, the 
thickness of the walls of the container will not be taken into account, given the 

complexity of calculating the volume of the container (i.e., the material the 

container is made of) using algebraic techniques, since orthohedral shapes have 

been avoided. This leaves us with the ideal case of calculating the volume of 

the container, including its content. 

After these initial considerations, we believe the search for a possible 

response to QG implies the approach of other derived questions1, namely: 

Q1 = What type of solids can be chosen to model this container? 

Q11 = What types of classes of geometric solids are there? 

Q12 = What elements allow us to describe a solid in geometry? 

Q13 = Which are the solids studied in geometry in compulsory 

secondary education? 

Q2 = Once the type of solid has been chosen, how to determine the 

shape and size of the solids that are part of that type? 

Q21 = Which and how many quantities do we need to determine 

the shape and size of a solid of a certain type? 

Q3 = How to design and build the container in such a way that it has a 

capacity of L (in ml), or a volume of V (in cm3)? 

Q31 = How to design and build a container of a certain shape 

in such a way that it has a capacity of L (in ml), or a volume of 

V (in cm3)? 

 

1  The choice of these questions coincides with some of the questions the students 

brought up during the implementation of the SRP, the partial results of which were 

published in Rojas y Sierra (2021a, 2021b). 
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In what follows, each of the above questions, as well as the ones that 

inevitably arise throughout the study, are addressed in order to develop a 

reasoned response to QG. For example, starting from Q31, several specific 

questions for a particular shape chosen could be derived, namely: 

Q311= How to design and build a container that has the shape of a 

regular tetrahedron in such a way that it has a capacity of L (in ml) or 

a volume of V (in cm3)? 

The search for an answer to Q1 implies dealing with Q11 and Q12.  To 

do this, the following should be established: a solid figure, unlike a plane figure, 
is a three-dimensional object that has a certain thickness and occupies a certain 

place in space (Castelnuovo, 1966). The kind of boundaries that delimits it –its 

shape and the characteristics of its surface– and their incidence–convexity and 

concavity–, define the class the solid belongs to (Guillén, 1991). As a result, 
solid figures may be convex or concave with boundaries consisting of flat 

surfaces, flat and curved surfaces, or only curved ones. Given the enormous 

complexity of possible solids, for now, only a reduced class of solids is studied.   

Therefore, a response R11 to Q11 implies somehow classifying some of 

the geometric solids. A classification was found (Figure 2), but we noticed that 

it does not differentiate cases that belong to more than one class of solid figures. 
For example, the case of the regular octahedron, which is also an antiprism and 

a deltahedron, or the case of the regular tetrahedron, which belongs to the class 

of pyramids. 

Starting from this classification, in which the shape of the faces of the 
solids has been taken into account, a response R12, to Q12 can be elaborated. 

Other elements that contribute to the description of the solids could be the 

number of vertices or diagonals. However, this does not define them, unless the 
relative position and the relationship between the diagonals, for instance, is 

established. A solid can also be described through its types of symmetries, or, 

in the case of solids of revolution, the way in which it has been generated from 

the revolution of a plane figure around a given axis. For example, in the case 
of the shape of the faces, the regular tetrahedron could be referred to as the solid 

delimited by four regular triangular faces. 

So far, it may be confirmed that a very large number of geometric solids 
exists, since, only by considering the possible shapes of the faces delimiting 

them, it is clear that both the number of said shapes and their incidence is 

overwhelming. Therefore, and in order to elaborate a possible response R13 to 
Q13, only some of the solids usually studied in compulsory secondary education 
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will be used. In the school textbooks of 3rd year compulsory secondary 

mathematics education (Alcaide et al., 2016; Latasa & Ramos, 2022), the 

chapter on the study of geometric solids concerns the study of some 
polyhedrons such as regular polyhedrons, prisms, pyramids, and truncated 

pyramids, as well as some solids of revolution like the cylinder, the cone, the 

truncated cone, and the sphere. Calculating the surface area and volume of those 

solids, as well as some solids that can be formed from them, is addressed. 

 

Figure 2 

Classification of geometric solids elaborated from the approaches of Guillén 

(1991). 

 

In unit 3 of the textbook by Bosch et al. (1996), aimed at the study of 

polyhedrons, the following is proposed: first, the study of the regular 
polyhedron; second, the transition from cubes to parallelepipeds and prisms; 

third, the transition from the regular tetrahedron to the pyramid; and, finally, 

from the regular polyhedron to the dual polyhedron. 

Guided by the proposal of Bosch et al. (1996), we propound the study 

of three classes of solid figures, starting from three regular polyhedrons, taking 

into account two criteria: a) the number of sides grows indefinitely on one or 
more of its faces; and b) the regularity of the solid gradually weakens. Each 

class thus starts with a regular polyhedron, continues with polyhedrons that are 

less regular until reaching a round solid whose faces are no longer polygons: 
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• First class: regular tetrahedron – right pyramids of any kind of base 

– cones 

• Second class: regular octahedron – regular base straight dipyramids 

– bicones 

• Third class: cube – right prisms of any kind of base – cylinders 

A fourth class, starting from the regular dodecahedron and the 
icosahedron polyhedron, duals of each other, may be considered. They are 

regarded as more spherical because their volume is similar to their 

circumscribed sphere, and by truncating their vertices, “soccer balls” (Carena, 

2020) come next, to finish with the sphere. 

It should be noted that we do not seek to address the entire universe of 

solids by using these classes, but rather, in a reasoned manner, the majority of 
the solid figures studied in secondary compulsory education. From these classes 

of solids, an answer may be elaborated to Q2, which deals with the 

determination (shape and size) of a solid. To do so, it is necessary to explain 

what determining a solid means. This involves asking, first of all, about when 
two solids have the same shape, and how many quantities we need to provide 

for a person who does not see the solid to be able to build one that has the same 

shape. Once the shape of the solid has been determined, to finish determining 
it, we should ask ourselves about determining the size. Another strategy is to 

jointly determine shape and size. 

Let us say that two solids have the same shape if there is a similarity 
that transforms one into the other. Therefore, if two solids have the same shape, 

they can only differ in size. What needs to be asked is how many quantities are 

needed to determine the shape of a particular solid. To determine the shape 

without considering the size, lengths, areas, or volumes of certain elements of 
the solid will not be used as measures (because they partly determine the size 

of the solid). However, relationships between different measures of magnitudes, 

and the measure of some angles of the solid can be used. 

For instance, to determine the shape of a right cylinder without 

considering its size, it is enough to provide a single measure, the ratio between 

the diameter of the base, and the height of the cylinder. If we also provide the 

radius of the base, the cylinder is completely determined, and it will therefore 

be possible to build it. 
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Determining and constructing polygons   

An analogous example can be found in two-dimensional geometry, in 
Gascón (2004). In the case of rhombuses, regarded as a type of polygon, to 

determine the shape of a specific rhombus, without considering its size, it is 

enough to provide a single parameter (for example, the relationship between 
the lengths of both diagonals, or the measure of one the angles). Thus, all 

rhombuses in which the ratio between their diagonals is, for example, 
2

3
, have 

the same shape. That is, if   𝑫2 =
2

3
𝑫1, where D1 and D2 are the diagonals of 

the rhombus, Figure 3 shows that both rhombuses have the same shape 

regardless of lengths D1 y D2. In order to determine the size, the measure of a 
length (e.g., the length of the side, or the length of one of its diagonals) also 

needs to be provided. 

 

Figure 3 

Example of rhombuses with diagonals whose ratio is 2/3. 

 

 

A more general question to ask within plane geometry is: Which and 

how many quantities do we need to determine and construct any kind of polygon? 

For any n-sided polygon, we will show that a maximum of 2n – 3 

quantities are needed to determine and construct it. Following Pólya (1967), we 
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propose three demonstrations of that fact, each of which suggests a strategy to 

construct the polygon. 

 

- First demonstration: the measures required are the ones of n – 1 

line segments that start from a vertex where the first and the last 

lines are sides of the polygon, and the rest are the n – 3 diagonals 
and n – 2 angles that determine each pair of previous segments in 

such a way that the first angle is the one formed by the first side of 

the polygon and the first diagonal, the second angle is the one 
formed by the first diagonal and the second diagonal, and so on, up 

to the angle formed by the last diagonal and the last side. Therefore, 

(n – 1) + (n – 2), that is, 2n – 3 quantities will be required. As 

shown, they allow the polygon to be constructed.  (Figure 4). 

 

Figure 4. 

Heptagon ABCDEFG determined by line segments AB, AC, AD, AE, AF, 
and AG, and by the angles between those segments (i.e., α, β, γ, δ, ε, 

respectively). 

 
 

- Second demonstration: The n – 3 diagonals starting from a vertex 

of the polygon, and the n sides of the polygon, which, properly 
arranged, enable building it, will be required. Hence, in this case, 

(n – 3) + n = 2n – 3 quantities (Figure 5) will be necessary. 
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Figure 5. 

Hexagon AEBCDF determined by diagonals AB, AC, and AD, and by sides 

AE, EB, BC, CD, DF and FA. 

 

 

 

Figure 6. 

Pentagon ABCDE determined by triangle ABC, which is in turn determined 

by AB, BC and CA; by triangle CAD, determined by sides CA and DA, and 
by angle α between those sides; and by triangle DAE, which is determined by 

sides DA and EA and by angle β between those sides.  

 

- Third demonstration: any n-sided polygon can be decomposed into 

n – 2 triangles. We thus need 3 quantities to construct the first 

triangle. To build each of the remaining n – 3 triangles, only 2 
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quantities are necessary, as they are constructed using one side that 

was already known to build the previous triangle. Therefore, 3 + 

2 (n – 3) = 2n – 3 quantities in total are necessary (Figure 6). 

Another way of showing this same result, derived from the third 

demonstration, without considering the size, is as follows: to determine the 

shape of an n-sided polygon, it suffices to determine the shape of each of the n 
– 2 triangles into which it is decomposed. Since the shape of a triangle is 

determined by 2 measures (for example, 2 angles), 2 (n – 2) = 2n – 4 quantities 

will be required to determine the shape of an n-sided polygon. Once the shape 
is determined, it is enough to add one piece of information (e.g., the length of 

any side of the polygon) to determine the size. In total, 2n – 4 + 1 = 2n – 3 

quantities are required. 

 

Determining and constructing solids 

A possible response R2 to Q2 may be elaborated considering, for 
instance, the first class of solids. Possible responses R21 to Q21 will also need to 

be found. The measures necessary to determine the shape and size of these 

solids will need to be established. The first step is to select some of the kinds 

of shapes that appear in Figure 7: the regular tetrahedron, right pyramids with 

a regular hexagonal base, and right cones. 

 

Figure 7. 

Some figures of the first class. From the regular tetrahedron to the right cone. 

 

 

Three new questions whose answers will help elaborate response R21 

arise here: 

Q211 = What quantities are necessary to determine and construct the 

regular tetrahedron?  
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Q212 = What quantities are necessary to determine and construct a right 

pyramid with a regular hexagonal base?  

Q213 = What quantities are necessary to determine and construct a right 

cone? 

The search for responses R211, R212 and R212 to the corresponding 

previous questions leads us to solve the type of tasks T21 = determining and 
constructing each of those solid figures using GeoGebra tools2. Solving T21 will 

depend on the geometric properties of the solid to be determined and 

constructed, and on the tools GeoGebra provides, such as tracing 2D and 3D 

figures, and connecting dynamic objects like sliders (Dos Santos, 2012). 

 

Determining and constructing a regular tetrahedron   

Task t211T21, which consists of determining and constructing a regular 

tetrahedron, is very simple and quite trivial because, to determine a regular 
tetrahedron, only one measure, which determines its size, is necessary, since all 

regular tetrahedrons have the same shape. To construct it using GeoGebra, it is 

enough to provide, for instance, the length of one of its edges. It is constructed 
in GeoGebra by using this information, and the length of the edge is given by 

providing the measures of its endpoints. 

If we add a slider to our construction, and connect it to the edge of the 
tetrahedron, when modifying its values, all possible regular tetrahedrons that 

only differ in size are obtained (Figure 8). 

 

 

2 GeoGebra is a free dynamic geometry programme widely disseminated and used in 

several academic environments for the study, development, and research of synthetic 

and analytical geometric knowledge, analysis of functions, etc. 
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Figure 8. 

Regular tetrahedron constructed in GeoGebra starting from the endpoints of 

an edge, connected to a slider that allows varying the distance between said 

points. 

 

 

If we consider the regular tetrahedron within the set of right triangular 
pyramids, and call l the edge of the base, L the lateral edge (the side that joins 

the apex with a vertex of the base), H the height of the pyramid, and a the 

apothem of the pyramid (the slant height of the lateral faces), for a pyramid of 
this type to have the shape of a regular tetrahedron, one of the possible relations 

between the measures of l, L, H and a should be satisfied. The first relation to 

be satisfied is that l = L. In a regular tetrahedron, the relation to be satisfied is 

that 𝑯 =
𝒍√6

3
 (to determine this relation, the Pythagorean theorem was applied 

to two right triangles). 

This means that all right triangular pyramids whose ratio between the 

height and the side of the base is 
√6

3
  ≈ 0.816 are regular tetrahedrons (the 

converse theorem is also true). This can be verified using GeoGebra. We 

constructed a right pyramid with an equilateral triangle base, whose side l = 9 

units and H ≈ 7.4 units. In GeoGebra, we thus obtain the construction of a right 

pyramid with a regular triangular base connected to two sliders: one that 
enables modifying the measure of the side of the base, and another that enables 

modifying the height of the pyramid (Figure 9). It is here possible to verify that 

all the pyramids in which, when activating the sliders, the relation between the 
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measure of l and H is 
𝑯

𝒍
=

√6

3
, or 

𝒍

𝑯
=

3

√6
 (approximately 1.22), are regular 

tetrahedrons. 

 

Figure 9. 

Right pyramid with a regular triangular base, constructed in GeoGebra, 

connected to two sliders that allow modifying its height and edge. 

 

 

Determining and constructing a right pyramid with a 

regular polygonal base 

To give a response R212 to Q212, the type of tasks T212 = Determining 
and constructing a right pyramid with a regular polygonal base, need to be 

solved. It is easy to verify that, to determine the shape of a right pyramid with 

a regular polygonal base (determining the type of regular polygon that forms 

the base), one measure is enough. Once the shape is established, other measures 

are required to determine the size of the pyramid. 

We will here stick to the particular case of a right pyramid with a 

regular hexagonal base. The relation between some of the intra-figural elements 
such as height H of the pyramid, apothem a, edge l of the base, and edge L of 

the lateral faces will be taken into account. 
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All the right pyramids with a regular hexagonal base in which the ratio 

between their height H and the edge of base l is 
𝑯

𝒍
= 2 are considered.   Those 

pyramids hence have the same shape. This can be verified using GeoGebra by 

constructing a right pyramid with a regular hexagonal base connected to two 
sliders; the first one allows changing the size of side l of the regular hexagon 

that serves as the base of the pyramid; and the second allows modifying height 

H of the pyramid. Random use of these sliders enables obtaining an infinite set 
of regular hexagonal-based pyramid shapes. Connecting a dynamic text that 

evaluates the ratio between H and l enables verifying for which values of H and 

l pyramids with the same shape, that is, similar pyramids, are obtained (Figure 

10). In this case, it is observed that, to build each of these pyramids, i.e., to 

determine their size, it is necessary to attribute values to l and H. 

 

Figure 10. 

Similar right pyramids with a regular hexagonal base whose ratio between H 

and l is 2.  

 

 

Determining and constructing a right cone   

As in the case of the right pyramid with a regular hexagonal base, we 
can proceed in the same manner to elaborate a response R213 to Q213. The task 

to solve is t213 = Determining and constructing a right cone. Relations of the 

elements of the base of the solid, such as radius r of the base with height H of 
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the cone or generatrix g, are considered, since this allows us to determine the 

shape of the cone. For instance, all the right cones in which the ratio between 

their height H and the radius r of their base is 
3

2
 have the same shape (Figure 

11). 

Figure 11. 

 

Figure 11. 

Right cones of the same shape whose ration between H and r is 
3

2
. 

 

 

Figure 12. 

Right cones of the same shape whose angle between g and radius r is 50º. 
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It could also be considered that all the right cones in which the angle 

between generatrix g and radius r of the base of the cone is, for example, 50º 

have the same shape (Figure 12).  

 

Determining and constructing a pyramid whose base is an 

n-sided polygon  

The following more general question is considered: How to determine 

and construct a pyramid whose base is an n-sided polygon? To provide an 
answer to this question, it is first necessary to determine and build the n-sided 

polygon of the base as mentioned in the section on determining and 

constructing polygons. To do this, we need 2n – 3 measures. In addition, the 3 
quantities necessary to determine and construct the vertex of the pyramid, 

which correspond to the three coordinates of this vertex, are required. To 

construct it, one vertex of the polygon of the base will be located at the 

coordinate of the origin (i.e., 0,0,0), and one side of the base at one of the 
coordinate axes. The rest of the measures3  will also be put. Once the three 

coordinates of the apex or vertex of the pyramid are given, the pyramid is 

already determined and constructed. The required quantities to determine and 
construct a pyramid whose base is an n-sided polygon are (2n – 3) + 3 = 2n 

(Figure 13).  

 

 

3  The new Spanish curriculum puts forward the following for first to third year compulsory 

secondary education (aged 12 to 15): Location and representation systems. – Spatial relations: 
location and description using geometric coordinates and other representation systems (MEFP, 
2022, p. 163). 
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Figure 13. 

Pyramid with pentagon ABCDE base, determined and constructed by triangle 

ABC, with sides AB, BC and CA, with sides CA and DA and the angle 
forming α, and with sides DA and EA and the angle forming β; and point F, 

which is the apex of the pyramid, with coordinates (3,4,5). 

 

 

Determining and constructing a cone  

The general question is: How to determine and construct any cone? 

The measures to determine the base of the cone, for example, radius r, and the 
three coordinates of the vertex of the cone that must be located in a plane 

parallel to that of the base at a distance equal to the height of the cone are 

necessary. In total, 4 quantities are required (Figura 14).  
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Figure 14. 

Circular-based cone with radio AB = 3,72 units and vertex C, with 

coordinates (1,6,5). 

 

 

Determining and constructing a prism whose bases are 

formed by an n-sided polygon 

The general question: How to determine and construct a prism whose 

bases are formed by an n-sided polygon? can also be considered. To provide 

an answer, we first construct the n-sided polygon of one of the bases, for which 

2n – 3 measures are needed. To construct the base, the same procedure as the 
one in the case of the pyramid is used. Then, the three coordinates of one of the 

vertices of the other base are required. This vertex will be located in a plane 

parallel to the base built at a distance equal to the height of the prism. Next, the 
other base can be built by drawing the different sides in said parallel plane 

starting from the built vertex, knowing that these sides must have the same 

length and must be parallel to their corresponding sides in the first base. The 
measures required to construct a prism whose bases are formed by an n-sided 

polygon are (2n – 3) + 3 = 2n (Figure 15).  
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Figure 15. 

Prism whose base is triangle ABC, determined by sides AB, BC and CA; and 

then, by point E of the other base whose coordinates are (1,3,4), being 

AB║EG, BC║GF, CA║FE, and AB ≅ EG, BC ≅ GF, CA ≅ FE. 

 

 

Designing and building a pyramid-shaped container with a 

determined volume 

In order to elaborate a possible response R311 to Q311, an answer should 

be elaborated to the type of tasks T311 = Designing and building a pyramid-

shaped container in such a manner that it has a volume of V cm3. 

Within the type of tasks T311, we chose the following particular task: 

t311 = Determining and building a container that has the shape of a right 
pyramid with a regular pentagonal base in such a way that it has a volume of 

V cm3. To search for an answer to t311, we know that 𝑽 =
𝑩𝑯

3
, where B is the 

area of the base of the pyramid and H is its height. The area of the base of a 

regular pentagon, in relation to edge l, is: 

𝑩 =
5𝒍2

4 𝑇𝑎𝑛 36º
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To obtain this result, the base of the pyramid is regular pentagon 

ABCDE (Figure 16), whose quantities are: edge l, perimeter p = 6l, apothem 

a = MP, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 < 𝑷𝑴𝑩 = 36º , 𝑨𝑩 = 𝒍 , 𝑷𝑩 =
𝒍

2
 , and with 

right triangle MPB, we know the area of the base4 is: 

 

Figure 16. 

Regular pentagon base of the right pyramid. 

 

 

𝑩 =
𝒑𝒂

2
 

But, 

𝑇𝑎𝑛 36º =
𝒍

2𝒂
 

 

4 It is worthy of note that the formula for the area of a regular polygon B is always 
presented in school textbooks depending on perimeter p and apothem a, thus 

suggesting that both measures are independent. When the polygon is a regular 

hexagon, the dependency relationship between p and a is obvious, and in other 

regular polygons it can be shown using trigonometric ratios, as we have just seen 

when calculating the area of a regular pentagon. 
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𝒂 =
𝒍

2 𝑇𝑎𝑛 36º
 

Substituting the value of a, we obtain: 

𝑩 =
5𝒍𝟐

4 𝑇𝑎𝑛 36º
 

By substituting B in the formula of volume V, we obtain: 

𝑽 =
5𝒍𝟐𝑯

12 𝑇𝑎𝑛 36º
 

By separating l, we obtain a first functional relationship between l and 

H for a given volume V. 

√
 𝑽 12 𝑇𝑎𝑛 36º

5𝑯
= 𝒍 

However, if we separate H, a second functional relationship between 

H and l is obtained for a given volume V: 

𝑽 12 𝑇𝑎𝑛 36º

5𝒍𝟐
= 𝑯 

 

Figure 17. 

Graph for the first case of the right pentagonal pyramid.  
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Using GeoGebra, these functional relationships can be represented. To 

do this, a value is attributed to V, using a slider with values between 0 and 1000 

cm3. We will thus see; in the first case, how l varies when we modify H and 
determine its volume; and in the second case, how H varies when we modify l 

and determine its volume. Thus, in the first case, for a volume V = 1000 cm3, 

when H=30, l ≈ 7,624 cm (Figure 17). 

In the second case, for a volume V = 800 cm3, when l = 10,3 cm, 

H ≈ 13,149 cm (Figure 18). 

 

Figure 18. 

Graph for the second case of the right pentagonal pyramid. 

 

 

It needs to be stressed that t311 is an inverse and open task, which means 

the formulas to calculate the volume are dealt with as algebraic or functional 
models. With the help of GeoGebra, this will facilitate considering the different 

solutions possible. 

So far, an REM has been developed regarding the problems the 
determination and construction of solids presents. Like all REMs constructed, 

it is of a provisional nature, awaiting possible permanent modifications, as new 

questions may appear whose answer will allow extending and completing those 

problems. 

The process followed is based on solving a spatial-geometric problem 

regarding the determination and construction of solids, starting from a system 
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in which a spatial problem is presented related to designing and building a 

container with a predetermined volume. To solve this problem, a mathematical 

model is employed in which geometric, arithmetic, algebraic, and functional 
elements are used. We have proposed a study of elementary geometry as a 

model of space where, as Brousseau puts forward (cited in Berthelot and Salin, 

2001), a-didactic situations regarding the determination and construction of 

solids will allow the development of geometric knowledge. 

 

CONCLUSIONS: SOME EPISTEMOLOGICAL AND 

DIDACTIC FUNCTIONS OF THE REM CONSTRUCTED  

The REM developed includes some of the questions (and associated 

tasks) related to the problem of spatial-geometric modelling, considered to be 

the problem of introducing geometry in secondary education. Therefore, the 
REM built stresses the experimental nature of geometry, and especially (but not 

only) of the introduction to the study of geometry. 

Open and inverse tasks in the physical space are put forward, and their 
resolution facilitates the emergence of any kind of mathematical models, which, 

by using tools such as GeoGebra, help solve them. Therefore, the identification 

of the mathematical activity with the modelling activity proposed by the ATD, 
also in the case of geometry, is stressed, advocating that the study activity, in 

the case of geometry, inevitably involves a modelling activity. 

The REM becomes a valuable tool for teachers in charge of study 

processes to be able to guide the design of their didactic proposals regarding 
3D geometry to get students to build new geometric techniques, question their 

validity, interpret geometric formulas as algebraic-functional models and, 

consequently, carry out a genuine modelling activity. It will serve as a reference 
and basis to design, experiment, and analyse different SRPs in compulsory 

secondary education, and to study the possible conditions and restrictions that 

may arise during their implementation. In essence, the REM enables supporting 

study processes for predetermined educational purposes without assuming that 
the specific path the study community should follow to achieve those purposes 

is determined in advance. 

As shown in the development of the REM, the problem studied with 
regard to the determination and construction of solids can help connect the 

study of 2D and 3D geometry, since the determination and subsequent 

construction of solid bodies is based on the previous determination of plane 
figures. Once agreed that “doing geometry” at the elementary level consists of 
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determining and constructing figures from some of their elements, it is very 

difficult to try to determine and construct a solid body without basing it on the 

determination of the plane figures that determine it. 

Furthermore, the development of the REM enables connecting several 

fields of mathematics, such as the study of geometry with that of algebra and 

functions. At this point, it is important to note that, from the perspective of the 
ATD, intra-mathematical modelling constitutes an essential part of 

mathematical modelling (Bosch et al., 2006; García et al., 2006). This means 

that, as shown earlier, in a modelling process, the system modelled can be of a 
mathematical nature, thus obtaining a mathematical model of a mathematical 

system. This extension of the usual notion of “mathematical modelling” 

highlights the potential reflective nature of mathematical modelling (a 

mathematical system can act as a model of its model, as happens, for example, 
in the case of the relationship between Euclidean and analytical geometry), as 

well as its recursive nature (it is possible to build a mathematical model of the 

model of a system). In our case, after carrying out the spatial-geometric 
modelling of a physical object, we built an algebraic model (using an “algebraic 

formula”) and, to solve problems related to the variation of one variable with 

respect to others, we built and used a functional model. 

The REM developed proposes the use of GeoGebra as a suitable tool 

to efficiently carry out graphic experiences that facilitate the study of the 

properties of solids from the elaboration of a predetermined container. The use 

of GeoGebra to respond to the problems raised also allows connecting the 
synthetic techniques with the analytical techniques of determination and 

construction of solids. 

One of the epistemological-didactic functions of the REM consists of 
bringing to light characteristics of the dominant epistemological model in 

school institutions such as the disconnection between 2D and 3D geometry, the 

isolation of geometry from algebra and functional techniques, and the 

separation between synthetic and analytical techniques. They constitute 
indications of didactic phenomena we consider “undesirable” from the 

perspective provided by the ATD postulates and hence intend to ignore. 

Developing this REM also provides the researcher with a tool to 
question the dominant epistemological model of geometry teaching in 

compulsory secondary education by means of the analysis of official 

curriculum documents and school textbooks. The REM thus constitutes a tool 
for the emancipation of the didactician with respect to the conditioning factors 

the dominant epistemological model entails (Gascón, 2014). 
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