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ABSTRACT 

Background: Relating and applying trigonometric contents to solve problem 

situations involving trigonometric integration is not easy for university students. 

Objective: To recognise trigonometry as a mathematical tool with multiple applications 
in their professional context. Design: Exploratory, descriptive, analytical-

interpretative. Setting and participants: University engineering students. Data 

collection and analysis: Two stages were programmed: preparation and formalisation. 

The classes were videotaped and transcribed into units of analysis in order to triangulate 

the information collected. Results: The importance of trigonometry as a mathematical 

tool that allows modelling different problem situations was highlighted. Conclusions: 

The development of mathematical competencies in young people was evidenced, 

manifested in the progress of advanced mathematical thinking skills, such as: 

abstracting, generalising, synthesising, defining, and demonstrating; manifested when 

facing different proposed situations where students understood that when using 

trigonometric integration, different trigonometric elements are also used, allowing for 
obtaining simpler expressions and facilitate integration. 

Keywords: Trigonometric integration, Advanced mathematical thinking, 

Trigonometry, Engineering students. 

 

Trigonometría vs integración trigonométrica 

 

RESUMEN 

Contexto: Relacionar y aplicar contenidos trigonométricos en la solución de 

situaciones problema que involucran integración trigonométrica no es tarea sencilla 

para estudiantes universitarios. En la muestra seleccionada se observó ausencia de 

significados trigonométricos, que no les permiten hacer conexión con el entorno y con 

situaciones problema propias de su formación profesional. Objetivo: Reconocer la 

trigonometría como una herramienta matemática con múltiples aplicaciones en su 

contexto profesional. Diseño: Exploratorio de tipo descriptivo, analítico-interpretativo. 

Entorno y participantes: Estudiantes universitarios de ingeniería. Recogida y análisis 
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de datos: Se programaron dos fases: de aprestamiento y de formalización. Las clases 

fueron videograbadas, se trascribieron en unidades de análisis para luego triangular la 

información recopilada. Resultados: Rescatar la importancia de la trigonometría como 

herramienta matemática que permite modelizar diversas situaciones problema. 

Conclusiones:  Se evidenció desarrollo de competencias matemáticas en los jóvenes, 

manifiestas en progreso de habilidades propias del pensamiento matemático avanzado, 

tales como:  abstraer, generalizar, sintetizar, definir y demostrar, manifiestas al 

enfrentar diversas situaciones propuestas, donde los participantes comprendieron que, 

al usar integración trigonométrica, también se usan diferentes elementos 

trigonométricos que permiten obtener expresiones más sencillas y que facilitan la 
integración. 

Palabras clave: Integración Trigonométrica, Pensamiento Matemático 

Avanzado, Trigonometría, Estudiantes de Ingeniería.  

 

Trigonometria vs integração trigonométrica 

 

RESUMO 

Contexto: Relacionar e aplicar conteúdos trigonométricos na solução de 

situações problemáticas envolvendo integração trigonométrica não é uma tarefa fácil 

para estudantes universitários. Na amostra selecionada, observou-se ausência de 

significados trigonométricos, o que não lhes permite fazer uma conexão com o 

ambiente e com situações problemáticas específicas de sua formação profissional. 

Objetivo: Reconhecer a trigonometria como uma ferramenta matemática com 

múltiplas aplicações em seu contexto profissional. Design: Exploratório, descritivo, 

analítico-interpretativo, tipo descritivo. Ambiente e participantes: estudantes 

universitários de engenharia. Coleta e análise de dados: Foram programadas duas 
fases: preparação e formalização. As palestras foram gravadas em vídeo, transcritas em 

unidades de análise e depois trianguladas. Resultados: Destacou-se a importância da 

trigonometria como ferramenta matemática para modelagem de diferentes situações 

problemáticas. Conclusões: O desenvolvimento das competências matemáticas nos 

jovens foi evidenciado no progresso das habilidades de pensamento matemático 

avançado, tais como abstração, generalização, sintetização, definição e demonstração 

manifestadas ao enfrentar várias situações propostas, onde os estudantes entenderam 

que, ao utilizar a integração trigonométrica, também são utilizados diferentes elementos 

trigonométricos, que permitem obter expressões mais simples e que facilitam a 

integração. 

Palavras-chave: Integração Trigonométrica, Pensamento Matemático 
Avançado, Trigonometria, Estudantes de Engenharia.  
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INTRODUCTION 

This research encompassed five groups of engineering students from 
several areas attending Calculus 2, a subject that includes integral calculus and 

some elements of vector calculus. As a first movement, we conducted a semi-

structured interview with this cohort to determine their knowledge level of 
trigonometry and whether they established any relationship between this branch 

of mathematics and their professional education. The answers showed us that 

most thought there was little or no relationship. Later, during the investigation, 

we observed that they could not relate trigonometry elements (ratios, functions, 
trigonometric identities) with problem situations typical of their professional 

formation. This finding revealed students’ difficulties transitioning from 

trigonometry to trigonometric integration. For example, they find it complex to 
visualise any modelling that uses the Pythagorean theorem based on the 

construction of a right triangle, where the original expression defines a 

trigonometric function of one of its acute angles, to find some assertive solution 
to the proposed problem situations. Another deadlock identified is 

understanding that many integrals can be calculated by manipulating the 

integrand through trigonometric identities, i.e., when the integrals present 

powers of trigonometric functions, it is necessary to use different trigonometric 
identities to obtain a new, also trigonometric, more straightforward expression 

that facilitates integration. Finally, the investigation allowed us to identify that 

some students recognise that the most used identities are the Pythagorean and 

the addition and subtraction of angles but find it difficult to use them in context.  

Theoretically, we used two referents, trigonometry and advanced 

mathematical thinking focused on trigonometric integration. In this type of 

thinking, students are expected to acquire a global mathematical meaning of 
various intertwined concepts that will help them develop mathematical 

competencies focused on abstracting, analysing, categorising, generalising, 

synthesising, defining, and demonstrating. Hence, the need to distinguish 
between mathematical knowledge used and the application of mathematical 

concepts when looking for a solution to a specific proposed situation.  

The results show that students find it challenging to solve problems that 
combine trigonometric tools (ratio, function, trigonometric series, especially 

trigonometric integration) and situations typical of their speciality area. In the 

case of trigonometric integration, we observed difficulties identifying and 

solving situations involving: 1) products and powers of 𝑠𝑖𝑛 𝑥  and cos 𝑥 , 2) 

products and powers of 𝑡𝑎𝑛  𝑥 and sec 𝑥, and 3) using reduction formulas to 

solve trigonometric integrals. Hence the importance of studying the uses given 
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to trigonometry so that they help students to signify this branch of mathematics 

during their university education, where the formalisation of concepts and 

elements of advanced mathematical thinking weighs.  

 

THEORETICAL REFERENCES  

This work is theoretically supported by two referents: elements of 

trigonometry and advanced mathematical thinking, particularly trigonometric 

integration. 

Trigonometry. Branch of mathematics that studies the relationship 
between sides and angles of triangles. The functions associated with these 

angles are called trigonometric functions. Among the applications is the study 

of spheres in the geometry of space and engineering. Geometrically, in the 
Pythagorean theorem, the hypotenuse and any of the legs (cathetus) are 

obtained as follows: ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 = √(𝑙𝑒𝑔1)2 + (𝑙𝑒𝑔2)2  equivalent to 𝑙𝑒𝑔 =

√(ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒)2 − (𝑙𝑒𝑔)2. The mathematical and geometric representation of 

the theorem is shown in Figure 1. 

 

Figure 1 

Representation of the Pythagorean theorem. 

 

 

A trigonometric ratio is a quotient between two magnitudes of the 
triangle (legs or between the hypotenuse and one of the legs), resulting in a 

numerical value. A trigonometric function is an application 𝑓: ℝ → ℝ,  which 

makes each real number correspond with another real number. The 
trigonometric functions allow us to extend the definition of trigonometric ratios 

to all real and complex numbers. Now, let us consider that the variable is always 

in the numerator of the fraction obtained as a function. Three trigonometric 

functions are determined: 𝑠𝑖𝑛 𝜃, 𝑡𝑎𝑛 𝜃  y 𝑠𝑒𝑐 𝜃, shown in Table 1. 
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Table 1 

Some angular functions 

Notation Definition 

𝑺𝒊𝒏 𝜽 The ratio between the leg (leg2) and the hypotenuse.  

Si𝑛 𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑙𝑒𝑔

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
=

𝐶2

ℎ
 

𝑻𝒂𝒏 𝜽 The ratio between the opposite leg (C2) and the adjacent leg (C1). 

T𝑎𝑛 𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑙𝑒𝑔

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑒𝑔
=

𝑪𝟐

𝑪𝟏
 

 

𝑺𝒆𝒄 𝜽 

The ratio between the hypotenuse and the adjacent leg (C1)  𝑆𝑒𝑐 𝜃 =

 
𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑒𝑔
=

ℎ

𝐶1
 , also known as the reciprocal of the cosine. That is, 

𝑆𝑒𝑐 𝜃 ∙ 𝐶𝑜𝑠 𝜃 = 1.  

 

On the other hand, a trigonometric identity is an equality between 
expressions containing trigonometric functions. It is valid for all angle values 

in which the functions (and the arithmetic operations involved) are defined. The 

Pythagorean identities and the identities for addition and subtraction of angles 

shown in Figure 2 are highlighted. 

 

Figure 2 

Basic trigonometric identities (own elaboration). 

 

 

Advanced Mathematical Thinking  

The mathematics education literature distinguishes advanced 
mathematical thinking (AMT) as a line of research dedicated exclusively to 

mathematical concepts specific to university or “advanced” mathematics. 

Vinner and Herschkowitz (1980) and Valdivé and Garbin (2008) focused their 
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research on the mental images that students evoke that conflict with 

institutionalised mathematical definitions1.  

Within the AMT, the student’s conceptual scheme of a mathematical 
concept is initially described as the entire cognitive structure associated with 

the concept, including all mental images, properties and processes associated 

with the mathematical notion (Garbin, 2005; Valdivé & Garbin, 2013). Mateus-
Nieves and Rojas (2020, p. 69) recognised that the AMT is typical of university 

education because “(...) the progressive mathematisation implies the need to 

abstract, define, analyse, and formalise. Among the cognitive processes with a 
psychological component, besides abstracting, we can highlight representing, 

conceptualising, inducing, and visualising”. However, although “(...) 

abstraction is not a characteristic of higher mathematics, nor is analysing, 

categorising, conjecturing, generalising, synthesising, defining, demonstrating, 
formalising, it is clear that these last three gain greater importance in higher 

education courses (...)” (p.69). Therefore, in this paper a distinction is made 

between mathematical knowledge used and the application of mathematical 
concepts, understanding by “use” Cabañas’ (2011, p. 98) definition, “the way a 

specific notion is used or adopted in a specific context”. Both use and 

application can generate meanings regarding the mathematics employed. 
However, the difference between them is that, in use, there is the functionality 

of mathematics; i.e., it can be employed or adopted to solve problems in 

different contexts, where the meanings generated and their understanding are 

privileged. On the other hand, the application is generally restricted to the 
meanings promoted by the school mathematical discourse employed, which, 

from what has been observed in various class sessions, are regularly of a rote 

type when solving problems. In this situation, students rarely show 

understanding and do not seem to recognise the type of mathematics employed.  

Mateus-Nieves and Font (2021) locate integral calculus within the 

AMT and describe three necessary global epistemic configurations to design 

thematic classes with greater didactic clarity for students. Mateus-Nieves and 
Hernández (2020) studied the global meaning of the integral that three groups 

of university students reach when its epistemic complexity is articulated when 

teaching it. Mateus-Nieves (2021) investigates the epistemology of the integral 

 
1In this work, institutionalised mathematics is understood as the theoretical proposal of 

the onto-semiotic approach of cognition and mathematical instruction (Godino, 

2002), where the following construct is proposed: institutional meaning as the 

content assigned to an expression that is recognised by the mathematical community 

as true and valid. 
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as an element of the AMT. Mateus-Nieves and Moreno (2021) focused on the 

AMT, designing and applying a didactic sequence with activities to analyse 

variational aspects of the function concept and how two groups of students 
attending Precalculus interpreted them. They demonstrated that, by engaging in 

the activity, students built successful approaches to understanding and using 

functions as models of situations of change and processes of variation.   

On the other hand, within the AMT, an integral is called trigonometric 

when the integrand consists of trigonometric functions and constants. With the 

selected sample, this work formalised that, for the resolution of problem 
situations both in context and in specific exercises, the integration methods and 

theorems must be used considering the suggestions described in Table 2. 

 

Table 2 

Hints for calculating trigonometric integrals 

1. Use a trigonometric identity and simplify it when trigonometric functions are 

present. If possible, use a graph that models the situation.  

2. Try to remove a square root. It is usually done after completing a square or a 

trigonometric substitution. 

3. Reduce an incorrect fraction2. 

4. Separate the elements of the numerator from the denominator of the fraction. 

5. Multiply by a unit form 
𝒈(𝒙)

𝒈(𝒙)
, which, when multiplied by the integrator 𝒇(𝒙), 

allows adequately modifying 
[𝒇(𝒙)𝒈(𝒙]

𝒈(𝒙)
. 

6. Try to substitute 𝒇(𝒙) with 
𝟏

𝒇(𝒙)
 . Have a table of trigonometric identities at hand 

and make the suitable substitutions until you reach the “basic formulas”. 

 

METHODOLOGY 

This research is exploratory, descriptive, and analytical-interpretative. 
Exploratory because it seeks to facilitate the understanding of the topic raised; 

descriptive and analytical-interpretative because it seeks to specify properties 

and characteristics students show when faced with trigonometric integration. 
Cohort: we selected 150 students from various engineering careers at a non-

state university. We organised two activities to select the sample: a written test 

consisting of five problem situations and five specific exercises on right 

 
2That is, to recognise the whole part in an improper fraction.  
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triangles and a semi-structured interview to identify students’ mathematical 

knowledge and the level of appropriation of trigonometric concepts and 

whether they saw any relationship with their professional education. The results 
were systematised and triangulated according to the agreed criteria (see Table 

3, results section).  

The class sessions were recorded and transcribed into units of analysis. 
The researcher observed and wrote in a field diary the data considered relevant 

for the development of the investigation. The units of analysis were triangulated 

with the data from the field diary. This information allowed for detailed 

monitoring of students’ performance and results and conclusions.  

The research was conducted in two distinct stages. During the initial 

stage, called preparation, we reviewed and subsequently reconstructed 

students’ pre-existing concepts because while we expected them to handle them 

well, we noticed shortcomings when students actively engaged with them. 

Such was the case of the trigonometric identities shown in Figure 2 or 

the construction of polar, cylindrical, and spherical coordinates exposed in the 
results section. During the second stage, formalisation, we carried out the 

mathematical modelling of twelve problem situations typical of engineering 

education. In some, we had to sketch conventional and unconventional surfaces 
using mathematical definitions typical of vector calculus, specifically in 

performing parameterisation of surfaces based on spherical coordinates. For 

this, we used online GeoGebra to support the visualisation, analysis, 

categorisation, generalisation, and synthesis of the situations so that students 
could define which functions, identities, and transformations should be used to 

face a possible assertive solution. Unfortunately, we will not present all the 

situations due to space limitations. Instead, we will bring the three that can offer 
the most didactic elements. Also, we cannot detail two situations related to 

surface parameterisation using spherical coordinates. 

The results and conclusions sections are focused on two axes that were 

addressed from three problem situations that required mathematical modelling 
to identify the use of trigonometric integration for its solution as an emergent 

transition from trigonometric concepts. The first axis is because engineering 

students model to design and analyse the work of different situations typical of 
their professional work. The second is to identify research results that 

contribute to didactics, particularly from the AMT, which help us understand 

how this mathematical knowledge typical of higher education is articulated 

with engineers’ education.  
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RESULTS AND ANALYSIS 

Table 3 shows some criteria used to select the sample after 
systematising the written test results and triangulating them with the semi-

structured interview.  

 

Table 3 

Sample selection criteria 

Mathematical knowledge used Application of mathematical 

concepts 
[The student] recognises trigonometric 
ratios 

Uses trigonometric ratios to solve problem 
situations. 

Identifies the trigonometric ratios in a 

right triangle. 

Gets the value of the trigonometric ratios 

for a given angle. 

 
 
Recognises trigonometric functions. 
  

Correctly uses trigonometric ratios to solve 
a right triangle. 

Uses the trigonometric functions correctly 
to solve problem situations. 

Identifies the polar coordinates of point 
P by considering the following graph:  
 

Note: Starting 

from the 

angle 𝜽 and the 

straight r, you 

get the point P, 

whose cartesian 

coordinates are 

(x,y). 

Identifies the x-axis of the plane as the 
polar axis. 

Correctly recognises the polar coordinates 
of point P. 

Identifies the polar coordinates of point P. 
Correctly writes the polar coordinates of 
point P. 

 

 
Identifies the trigonometric functions on 
the trigonometric circle. 

Correctly employs trigonometric ratios to 

solve a right triangle. 

Draws the angular functions on the unit 
circle. 

Recognises the sign of the functions in the 

quadrants. 

 
Obtains the Pythagorean identities by 
reasoning about the trigonometric circle. 
  

 Correctly uses the Pythagorean identities. 

Has the algebraic ability to solve the 
different trigonometric functions from the 

Pythagorean identities correctly. 

  
 
Recognises the identities for multiple 
angles.  

 Knows and correctly uses identities to 
double angles. 

Knows and correctly uses identities to triple 
angles. 



  Acta Sci. (Canoas), 25(3), 92-119, May/Jun. 2023 101 

Knows and correctly uses identities to 

medium angles. 

Recognises trigonometric functions. Correctly uses inverse trigonometric 
functions. 

 

The results obtained from Table 3 allowed us to find 50 students whose 

performance was categorised as medium-low. We organised two groups and 

named the participants E1-E50 to monitor individual performance exhaustively. 

With this sample, we began the first stage, preparation. In this stage, we had to 
reconstruct previous concepts students should already know. We showed them 

that we could find other identities through simple algebraic processes from the 

registers in Table 1 and Figure 2, this time for double angles. Due to the limited 

space in this article, we present only those related to 𝑠𝑖𝑛 𝑥 or cos 𝑥 (see Figure 

3) functions, avoiding presenting the algebraic processes, as they are 

considered too elementary. 

 

Figure 3 

Derived constructions  

 

 

The transition of those equalities from the identities for addition and 

subtraction was not an easy task for the students, even though they had probably 

seen those themes in previous courses. Given the instrumental nature of the 
contents, this fact allowed us to infer that they did not handle algebra well 

(mathematical knowledge). We believe that students’ meanings were 

insufficient since they could not connect the ways to employ a specific notion 

in a specific context. Such limitation restricts the application of mathematical 
concepts. Furthermore, some students thought the constructions were 

independent. For example, E21 stated: “When I learned them [the 

constructions], the professor taught them as axioms; he never made 
constructions like the ones we see today in this class, which allows me to 
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understand them as coming from algebraic processes.” [unit of analysis 96]. 

This speech shows that students have mathematical knowledge but cannot 

apply these concepts due to unplanned teaching, which can lead students to 
present epistemological obstacles. In terms of Barrantes (2006), following 

Brousseau, from a didactic point of view, this shows the importance of 

considering the elements at stake between teaching and learning. To Brousseau, 
“the error is not only the effect of ignorance, uncertainty, but the effect of 

previous knowledge, which, despite its interest or success, now turns out to be 

false or simply inadequate” (Barrantes, 2006, p.3). In other words, in the study 
of epistemological obstacles, we sought to determine the causes of errors since 

students’ mistakes do not occur only due to their lack of prior knowledge to 

analyse a specific situation; sometimes, previous knowledge hinders access to 

new knowledge because it may be so ingrained, that students’ minds may offer 

resistance; thus, they may find it hard to reconsider or change it. 

In the second stage, formalisation, we institutionalised that the process 

of integration by trigonometric substitution enables to combine functions 
containing algebraic expressions that can be converted into the forms: 

√𝑎2 − 𝑥2, √𝑎2 + 𝑥2, √𝑥2 − 𝑎2. This method eliminates the square root through 

right triangles, the Pythagorean theorem, and trigonometric identities. Then, we 
carried out mathematical modelling on the exercises and situations for students 

to visualise and connect the proposed situation with already-known 

mathematical expressions: ratios, trigonometric, and integral functions. When 
trying to solve them, students identify that integration is necessary but find it 

challenging to identify and use the necessary method(s) to solve them. Once 

again, this aspect led us to infer students’ difficulties relating the mathematical 

knowledge learned to apply the concepts to particular situations.  

For example, we presented the case of the integral ∫
1

x2−4
 dx, where 

they had to apply the method by trigonometric substitution. We had to guide 

students to recognise that this situation can be related to the Pythagorean 
theorem, in which it is possible to structure a right triangle where the original 

expression defines some trigonometric function of one of its acute angles. For 

the modelling, we created Figure 4, a right triangle, to identify which 
corresponding trigonometric function allows students to interpret the 

expression 𝑥2 − 4, in such a way that the root of the minuend is the hypotenuse 

(x) and the root of the subtrahend one of the legs (which, in this case, is 2).  
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Figure 4 

Interpretation of a right triangle 

 

 

In this model, the appropriate trigonometric function, according to the 

location of the data, is 𝑠𝑒𝑐  𝜃 , since the variable 𝑥 remains in the numerator. 

We completed the triangle to determine the value of leg2, considering 

Leg2=√𝑥2 − 4. Subsequently, we found that sec 𝜃 =
𝑥

2
 ; by isolating the variable 

𝑥 = 2𝑠𝑒𝑐𝜃 → 𝑑𝑥 = 2𝑠𝑒𝑐𝜃 tan 𝜃. Substituting  𝑥 and its differential in the original 

integral, we have the equivalent: 

 

∫
1

𝑥2 − 4
 𝑑𝑥 = ∫

2 sec 𝜃 𝑡𝑎𝑛𝜃

4𝑠𝑒𝑐2𝜃 − 4
 𝑑𝜃 = ∫

2 sec 𝜃 𝑡𝑎𝑛𝜃

4(𝑠𝑒𝑐2𝜃 − 1)
 𝑑𝜃 

 

=
1

2
∫

𝑠𝑒𝑐𝜃 𝑡𝑎𝑛𝜃

𝑡𝑎𝑛2𝜃
𝑑𝜃 =

1

2
∫

𝑠𝑒𝑐𝜃

tan 𝜃
𝑑𝜃 

now, as 𝑠𝑒𝑐𝜃 =
1

cos 𝜃
  and 𝑡𝑎𝑛𝜃 =

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
  , so 

𝑠𝑒𝑐𝜃

tan 𝜃
=

1

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

= 𝐶𝑠𝑐𝜃  , in the 

integral, we have: 

∫
1

𝑥2−4
𝑑𝑥 =

1

2
∫ 𝐶𝑠𝑐𝜃𝑑𝜃 =

1

2
𝑙𝑛(𝐶𝑠𝑐𝜃 − 𝑐𝑜𝑡𝑎𝑛𝜃) + 𝐶. As the integral 

should be expressed in terms of the variable 𝑥, we consider that 𝐶𝑠𝑐𝜃 =
𝑥

√𝑥2−4
 

and 𝐶𝑜𝑡𝑎𝑛𝜃 =
2

√𝑥2−4
 . Therefore, the integral was given as: 

∫
1

𝑥2 − 4
 𝑑𝑥 =

1

2
ln (

𝑥

√𝑥2 − 4
−

2

√𝑥2 − 4
) =

1

2
 𝑙𝑛 (

𝑥 − 2

√𝑥2 − 4
) + 𝐶 ≜ 

 

This situation was not at all conventional for many students. For 
example, E5 says: “…it turns out to be a very elaborate process for someone 

just learning the topic” [unit of analysis 315]. During the conversation between 

the researcher and the group of students, the student added, “It is not easy to 
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achieve that ability to interpret and relate already-known mathematics with 

new situations” [unit of analysis 318], which allows us to ratify students’ 

difficulties to relate the already-studied mathematical knowledge to the 
application of those concepts at the intra and extra-mathematical levels. It is 

difficult for them to visualise the emergence of related mathematical topics, as 

they see them as independent mathematical entities. In terms of Doumas and 
Hummel (2005), it corresponds to difficulties with the development of 

relational thinking, referring to the ability to form and manipulate relational 

representations, which allows them to achieve the ability to create analogies 
between apparently different objects or events, and the ability to apply abstract 

rules in known situations. The researcher was struck by E5’s affirmation: “it 

turns out to be a very elaborate process…” and asked him why he thought so, 

to which the student replied: “During high school and in these two university 
years, it is the first time that a teacher builds a concept from a problem situation 

relating it to previous knowledge. The teachers always gave us a problem and 

formulas, but I never knew where or how they had been built. Many times I 
wondered, is that true? Who dedicated themselves to studying that? and why?” 

[units of analysis 315-318]. This statement allows us to infer that this young 

man faced formal-mechanistic teaching processes in which the epistemological 

vigilance of the taught knowledge was neglected. 

 Another exercise that caused difficulties for the students was: from 

∫
1

(𝑥2−2𝑥+5)2 𝑑𝑥, they had to locate the values of the legs and the hypotenuse. 

The modelling created from a right triangle, which, at the end of the exercise, 

generated Figure 5, was not as easy for them as we initially thought. They had 

a hard time identifying that the algebraic expression must be of the form 

√𝑥2 + 𝑎2 to calculate the integral. And that this algebraic expression had to be 

transformed to identify the requested values and locate them in the triangle. We 

asked the students which algebraic process could be applied to the denominator 

to transform it into one in the indicated way. Some students presented the 

expression ∫
1

(𝑥2−2𝑥+5)2 𝑑𝑥 =  ∫
1

(𝑥2−2𝑥+1+4)2 𝑑𝑥 = ∫
𝑑𝑥

((𝑥−1)2+4)2  [unit of analysis 

350], where the denominator is 𝑥2 + 𝑎2. We highlight here the mathematical 

knowledge some students employed and the functionality of mathematics 

manifested in adequate algebraic handling and the commutativity in the 

expression presented, which leads us to infer privilege in the meanings the 
students generated, and their understanding. We must note that some students 

disagreed with this algebraic treatment because the radical did not appear. This 

makes us believe that these students present a mathematical knowledge 
weakness that prevents them from using and adopting the acquired knowledge 
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to solve problems in different contexts. For them, the application is limited to 

the meanings promoted by the short-term memory-type school mathematical 

discourse, which confirms the importance of breaking with the formal-
mechanistic paradigm of the rote learning traditionally applied in higher 

education.  

When this difficulty was overcome by the researcher’s intervention, the 
following was defined: 𝑥 − 1 = 2𝑡𝑎𝑛𝜃 → 2 𝑠𝑒𝑐2𝜃𝑑𝜃   by substituting into the 

integral, we get: ∫
1

(𝑥2−2𝑥+1+4)2 𝑑𝑥 = ∫
2 𝑠𝑒𝑐2𝜃𝑑𝜃

(4 𝑡𝑎𝑛2𝜃+4)2 , factoring 4 into the 

denominator, applying the second Pythagorean identity shown in Figure 2 and 

simplifying, we obtain ∫
2𝑠𝑒𝑐2𝜃

16 𝑠𝑒𝑐4𝜃
𝑑𝜃 =

1

8
∫

𝑑𝜃

𝑠𝑒𝑐2𝜃
=

1

8
∫ 𝑐𝑜𝑠2𝜃𝑑𝜃 =

1

16
∫(cos 2𝜃 +

1) 𝑑𝜃. . Using the second identity for double angles shown in Figure 3, we have: 
1

16
∙

1

2
𝑠𝑖𝑛 2𝜃 +

1

16
𝜃 + 𝑐, equivalent to: 

1

16
(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) +

1

16
𝜃 + 𝑐[∗]. 

As 𝑥 − 1 = 2𝑡𝑎𝑛𝜃, hence tan 𝜃 =
𝑥−1

2
↔ 𝜃 = 𝑡𝑎𝑛−1 𝑥−1

2
 . With these data, 

it is now possible to visualise the values of the legs and the hypotenuse on the 

right triangle. 

 

Figure 5 

Construction of the situation 

 

 

From Figure 5, from which we deduced that 𝑠𝑖𝑛𝜃 =
𝑥−1

√𝑥2−2𝑥+5
  andcos 𝜃 =

2

√𝑥2−2𝑥+5
 , by substituting these values into the equality 

marked as [∗], we have:  

∫
1

(𝑥2 − 2𝑥 + 5)2
𝑑𝑥 =

1

16
[

𝑥 − 1

√𝑥2 − 2𝑥 + 5
∙

2

√𝑥2 − 2𝑥 + 5
] +

1

16
𝑡𝑎𝑛−1

𝑥 − 1

2
+ 𝑐. ≜ 

 

Equivalent to  

∫
1

(𝑥2 − 2𝑥 + 5)2
𝑑𝑥 =

1

8

(𝑥 − 1)

𝑥2 − 2𝑥 + 5
+

1

16
𝑡𝑎𝑛−1

𝑥 − 1

2
+ 𝑐. ≜ 
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Given this situation, we highlight that the difficulties presented by the 

students are related to not remembering the three cases studied in previous 

classes (mathematical knowledge used). Here the teacher in charge must 
recognise that both use (functionality) and application can generate meaning in 

the students through the mathematical discourse and the mathematics utilised. 

Therefore, we had to reinforce the three cases studied from the models 

presented in Figures 6, 7 and 8. In their order, they were: 

 

1. If the function to be integrated contains an expression of the form 

√𝑎2 − 𝑥2, the substitution should be 𝑥 = 𝑎 𝑠𝑖𝑛𝜃 (𝑐𝑜𝑛 𝑎 > 0 𝑦 −
𝜋

2
≤

𝜃 ≤
𝜋

2 
), given that it will remove the square root.  

 

Figure 6 

Case 1 

 

By graphing on the triangle and making the substitution, the 

student visualises that √𝑎2 − 𝑥2 = 𝑎 𝑐𝑜𝑠𝜃.  

 

2. If the function to be integrated contains an expression of the form 

√𝑎2 + 𝑥2, the substitution is 𝑥 = 𝑎 tan 𝜃, with (𝑎 > 0, −
𝜋

2
≤ 𝜃 ≤

𝜋

2 
).  
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Figure 7 

Case 2 

 
 
3. If the function to be integrated contains an expression of the form 

√𝑥2 − 𝑎2,, the substitution should be 𝑥 = 𝑎 sec 𝜃,with (𝑎 > 0, 0 ≤

𝜃 ≤
𝜋

2 
,   𝑜, 𝜋 ≤ 𝜃 ≤

3

2
𝜋, ),  given that it will remove the square root. 

 

Figure 8  

Case 3 

 

 

By overcoming this difficulty and exposing them to the other chosen 

situations where they had to relate spherical and cylindrical coordinate systems, 

we observed that strengthening the previously exposed relationships allowed 

them to obtain an approximation to the Cartesian coordinate system, 
recognising that they provide a simple way of describing the location of points 

in space. Taking advantage of this situation, we explained that some surfaces 

could be challenging to model with equations based on the Cartesian system, a 
familiar problem in engineering since, in two dimensions, polar coordinates 

regularly provide a sound alternative system for describing the location of a 

point in the plane, particularly in cases involving circles. Now, it is possible to 
describe the location of points in space in two different ways (cylindrical and 

spherical coordinates). The former helps with problems involving cylinders, 

e.g., calculating the volume of a round water tank or the amount of fluid that 
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passes through a pipe. The second helps with problems related to spheres, e.g., 

finding the volume of vaulted structures. Faced with this issue and given the 

students’ difficulties in understanding the situations raised, we reviewed some 
basic notions that had not been considered in stage 1 because we took for 

granted that students knew them well and could handle them: polar, cylindrical, 

and spherical coordinate systems and parametric surfaces. So, we followed the 

approach presented in Stewart (2012), as stated below. 

To expand the traditional Cartesian coordinate system from two to three 

dimensions, it is enough to add a new axis to model the third dimension 
considering that a Cartesian coordinate system is defined by two orthogonal 

axes in a two-dimensional system and three orthogonal axes in a three-

dimensional system that intersect at the origin (0,0) and (0,0,0) respectively. 

Therefore, to represent the points in the Cartesian plane, we employed the 
system of polar coordinates, where it is necessary to know an angle (θ) and a 

distance (k).  

 

Figure 9 

Polar coordinates of a point (own adaptation from Stewart, 2012, p. 639).  

 

 

By following a process similar to that used in two dimensions, through 
polar coordinates, we created a new three-dimensional coordinate system called 

a system of cylindrical coordinates, indicating that cylindrical coordinates 

provide a natural extension of polar coordinates to three dimensions. It seemed 
like a simple process, but for the students, it was not. Among the difficulties 

identified while constructing the system of cylindrical coordinates as a natural 

extension of polar coordinates to three dimensions, E17 asked: “Professor, can 
this process continue indefinitely?” [unit of analysis 530], which reveals that 

this student is unaware that it is only possible to make graphs up to three 

dimensions.  
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Regarding the construction of cylindrical coordinates3, initially, we had 

to declare that, from the Pythagorean correspondence established for a right 

triangle, the relationship between polar and Cartesian coordinates is given by 
the equalities: 𝑥 = 𝑟 cos 𝜃, and 𝑦 = 𝑟𝑠𝑖𝑛𝜃, where it is possible to verify that 𝑟 =

√𝑥2 + 𝑦2, and the formula for the polar angle is 𝜃 = 𝑐𝑜𝑠−1 (
𝑥

𝑟
), considered in 

Figure 10. 

 

Figure 10 

Polar coordinates in the plane 

 

 

Now, in Figure 11, we identified a right triangle on the plane 𝑥𝑦, the 

length of the hypotenuse is r, and θ is the measure of the angle formed by the 

positive x-axis and the hypotenuse. The coordinate z describes the location of 
the point above or below the plane  𝑥𝑦. At this point, it was essential for the 

students to make the construction in GeoGebra, where they could identify the 

“key” to transform cylindrical coordinates to Cartesian, or rectangular and vice 

versa. 

 

 
3 In this system, a point in space (Figure 8) is represented by the ordered triple (r, θ, z), 
where 

• (r, θ) are the polar coordinates of the projection of the point on the plane𝑥𝑦 

• z is the usual coordinate z in the Cartesian coordinate system. 

 



110  Acta Sci. (Canoas), 25(3), 92-119, May/Jun. 2023  

Figure 11 

Representation of a point in space 

 

 

During the conversion from rectangular to polar coordinates in two 

dimensions, we emphasised that the equation tan 𝜃 =
𝑦

𝑥
  has an infinite number 

of solutions. However, by restricting 0 ≤ 𝜃 ≤ 2𝜋 , it was possible to find a 

unique solution based on the 𝑥𝑦 quadrant of the plane at which the original 

point lies (x, y, z). We considered that if x = 0, then the value can 𝜃 =
𝜋

2
,

3𝜋

2
, or 0, 

depending on the value of y. We observed that very few students noticed that 

these equations derive from the properties of right triangles. This allows us to 

infer that, for them, relational understanding, defined as the ability to identify 
operations and relate algebraic expressions in a flexible way (mathematical 

knowledge), is limited to a conceptual network that does not correspond to 

some mathematical concepts and the ability to use them to find answers or make 

value judgments about the reasonableness of the assigned use. So, they cannot 
determine what type of relationships are taking place and whether they are 

adequate. That is why the significance reached makes the application of 

mathematical concepts limited. Regarding spherical coordinates 4 , we 
emphasised that a surface in space is represented by a set of parametric 

equations described in a vector function.  

 
4  Understood as another generalisation of the polar coordinates of the plane when 

rotated about an axis. This situation presents three constitutive elements: 

• The radial 𝑟coordinate: distance to origin 

• The polar coordinate 𝜃: the angle that the position vector makes with 

the axis.𝑧  

• The  azimuthal coordinate 𝜑: the angle that the projection onto the plane 

𝑥𝑦 forms with the 𝑥 -axis. 

The variation ranges of these coordinates are: 𝑟 ∈ [0, ∞); 𝜃 ∈ [0, 𝜋]; 𝜑 ∈ (−𝜋, 𝜋]. It 
should be noted that the angle 𝜑 can also vary in the interval[0, 2𝜋). 
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Given this situation, we proposed that students find the area of the 

circumference (𝑥 − 𝑎)2 + (𝑦)2 = 𝑎2, 𝑎 > 0: What can you conclude when 

employing trigonometric substitution and then polar coordinates? Given this 
situation, we noticed that when building the graph on GeoGebra online, they 

identified that a family of circumferences tangent to the origin of the plane was 

generated (Figure 12). 

 

Figure 12 

Family of circumferences  

 

 

When asked about the work to be done according to the graph that the 
software offers, the students’ proposals were almost uniform. They identified 

that the area was determined by the integral 𝐴 = 2 ∫ √𝑎2 − (𝑥 − 𝑎)2𝑑𝑥
2𝑎

0
, and 

that it is a case 1 exercise, which led them to substitute the form 𝑥 = 𝑎 𝑠𝑖𝑛𝜃 to 

remove the square root. What was difficult for the students to identify was the 

correct substitution. E25 proposed: “𝑥2 = 𝑠𝑖𝑛𝜃 ”. When asked: “What is the 
differential? And, by making the respective substitution in the integral, is it 

easier to calculate? [unit of analysis 564], he replied: “The differential is 𝑑𝑥 =
𝑐𝑜𝑠 𝜃

2𝑥
, but I don’t see whether this helps solve the exercise” [unit of analysis 565]. 

This allows us to infer that the subgroup where this student worked has unclear 

mathematical knowledge. Therefore, the relational thinking they handle does 

not allow them to assertively identify the application of concepts.  

After examining this proposal with the entire group, E41, a member of 

another subgroup, with his notebook in hand, centred on the table and proposed:  

We worked trying several options; the one that worked best for 

us was: 

Let be 𝑥 − 𝑎 = 𝑎 𝑠𝑖𝑛𝜃 ; the differential is 𝑑𝑥 = 𝑎𝑐𝑜𝑠𝜃𝑑𝜃.  oow, 

since it is a circumference, then 𝑥 = 2𝑎 , leading to 𝑎 =
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𝑎 𝑠𝑖𝑛𝜃 → 𝑠𝑖𝑛𝜃 = 1  , which allows us to conclude that 𝜃 =
𝜋

2
 . 

And as 𝑥1 = 0 → −𝑎 = 𝑎 𝑠𝑖𝑛𝜃,  , it means that 𝑠𝑒𝑛𝜃 = −1,  , 

therefore 𝜃 = −
𝜋

2
  which represents the limits of integration 

[units of analysis 578-580]. 

 Then, E28, a member of the same subgroup, said:  

We have already calculated the integral; professor, can we go 

to the board?” and writes: “𝐴 = 2 ∫ √𝑎2 − 𝑎2𝑠𝑖𝑛2𝜃
𝜋

2

−
𝜋

2

, 𝑎 cos 𝜃𝑑𝜃 

,  which is equivalent to  2𝑎2 ∫ 𝑐𝑜𝑠2𝜃𝑑𝜃 =
𝜋

2

−
𝜋

2

2𝑎2 ∫
1+cos 2𝜃

2
𝑑𝜃 =

𝜋

2

−
𝜋

2

𝜋𝑎2, this number 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 the value of 

the requested area [units of analysis 581-583]. 

Regarding the use of polar coordinates, the subgroup of student E30 

stated:  

We did this work: be 𝑥 = 𝑟 𝑐𝑜𝑠 𝜃 and 𝑦 = 𝑟 𝑠𝑖𝑛𝜃, as (𝑥 − 𝑎)2 +

𝑦2 = 𝑎2 → 𝑥2 + 𝑦2 − 2𝑎𝑥 = 0  so, 𝑟2 − 2𝑎𝑥 𝑐𝑜𝑠𝜃 → 𝑟(𝑟 −

2𝑎 𝑐𝑜𝑠𝜃) = 0, then you have that 𝑟 = 2𝑎 𝑐𝑜𝑠𝜃. 

Now, if we consider 𝐴 =
1

2
∫ |𝑓(𝜃)|2𝑑𝜃

𝑏

𝑎
= 2 [

1

2
∫ (2𝑎 𝑐𝑜𝑠𝜃)2𝑑𝜃

𝜋
2

0
] 

you have:= 4𝑎2 ∫
1+𝑐𝑜𝑠 2𝜃

2

𝜋
2

0
𝑑𝜃 = 2𝑎2 ∫ (1 + 𝑐𝑜𝑠 2𝜃)𝑑𝜃

𝜋
2

0
, which, 

when calculating, gives: 𝜋𝑎2 [units of analysis 592-594]. 

In both productions, we observed that students treated the exercise data 

suitably, meaning they developed relational thinking that they expressed in 

understanding, ordering, and classifying the data of the proposed situation with 
their schemes, connecting ideas exhaustively to extract the correct answer. 

Thus, the mathematical knowledge was adequately used. For those students, as 

in Meel (2003), when citing Skem (1978), there is a distinction between 
relational and instrumental understanding, leading to contrasting relational 

thinking with procedural thinking. Following this author, we identify students, 

understanding when “they know what to do and why” (p. 9), i.e., they do 

understand (functionality of mathematics). At the same time, they use 
instrumental comprehension to identify “particular rules and know how to 

apply them” (p. 9).  

We observed that the GeoGebra Surface command syntax allowed 
them to link the mathematical definition with its graphical representation, 



  Acta Sci. (Canoas), 25(3), 92-119, May/Jun. 2023 113 

viewed in 3D, which makes us believe that this software offered the students a 

user-friendly environment. They interacted with the commands straight through 

the input bar, which allowed them to visualise the graph of unbounded surfaces 
from different angles. This technological environment became a tool for 

learning because it helped them visualise and represent concepts. 

Regarding the spherical coordinates, we institutionalised that, in the 
Cartesian coordinate system, the location of a point in space is described by an 

ordered triple, where each coordinate represents a distance. On the other hand, 

in the cylindrical coordinate system, the location of a point in space is described 

by two distances (𝑟𝑦𝑧) and an angle (𝜃). In the spherical coordinate system, 

we again used an ordered triple to describe the location of a point in space, 

except that this time, the ordered triple described a distance and two angles. 

This type of spherical coordinates allowed for the description of a sphere and 
the cylindrical coordinates of a cylinder. For this, it was formalised according 

to Stewart (2012, p. 1005):  

Definition: The spherical coordinate system (𝜌, 𝜃, 𝜑) of a point 
𝑃 in space (Figure 13), where 𝜌 = |0𝑃| is the distance from the 

origin to 𝑃; 𝜃 is the same angle as in cylindrical coordinates, 

and 𝜑  is the angle between the positive axis 𝑧  and the line 

segment 0𝑃. With 𝜌 ≥ 0, and 0 ≤ 𝜑 ≤ 𝜋. We must note that this 
spherical coordinate system is useful in problems with 

symmetry around a point, and the origin is located at that point.  

 

Figure 13 

Spherical coordinates of point P (own adaptation). 

 

 
Due to the multiple difficulties presented by the students in handling 

such concepts, we could only work on the conversion between spherical, 

cylindrical, and rectangular coordinates. As a result, two of the twelve chosen 
situations could not be resolved because they involved handling those concepts. 
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Although the formulas to convert spherical coordinates into rectangular 

coordinates seemed complex, they are typical applications of trigonometry that, 

for this group of students, are worth reinforcing as an extra activity in class. 

 

CONCLUSIONS 

We found that some students do not think trigonometry is a valuable 

mathematical tool in their professional work. Yet, paradoxically, when asked 

whether they had ever used sine and cosine functions, to name a few, they gave 

answers such as E10’s: “Yes, we do use these formulas.” [unit of analysis 421].  

In the study, we realised that students progressed in conceptualising 

elements of the process to be followed to solve a problem situation, gaining 

familiarity with the properties of the operations to be used, and understanding 
the contexts in which the integral was presented as an operator and as a 

function. They also understood trigonometric integrals and improved their 

ability to relate them to elements of trigonometry. The construction of the 
integral in an operational sense was crucial in building and understanding the 

relationships between the AMT and engineering, mathematical symbols, and 

associated mental objects. Students also advanced regarding the proper use of 

an essential symbolic system to generalise, formalise, and argue. The students 
reached an operational level when they could propose adequate solutions to 

situations they did not know beforehand. This required generalisations, which 

increased their abstraction capacity, as one must understand not only the 
operations but their structure, which are elements that help students develop the 

ability to relate integration in different mathematical problem situations typical 

of an engineer’s work. 

Regarding the mathematical knowledge used and the application of 
mathematical concepts, we observed that students learned how to integrate a 

variety of products of trigonometric functions that are commonly known as 

trigonometric integrals, some of them supported by specialised mathematical 
software, however without understanding the technique employed for the 

integration by trigonometric substitution. Very few students identify that this 

technique allows converting algebraic expressions one may not be able to 
integrate into simpler expressions that involve trigonometric functions that 

allow the integral to be calculated through the techniques described. We 

emphasise the importance of using specialised software without neglecting the 

construction of concepts so that the students reach meanings and senses of said 

constructions to apply them later. 
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Regarding solving problem situations with trigonometric integrals, we 

found limited use of relational thinking, referenced in the scarce appropriation 

of concepts and their possible applications. However, some students could 
establish emergent relationships between integrals where there were products 

of powers of trigonometric functions, especially when they identified even 

powers of sine and odd powers of cosine, and had to decompose the odd power 
of a cosine. A similar situation happened when they identified the odd power of 

the sine and even power of the cosine and had to decompose the odd power of 

the sine using the Pythagorean trigonometric identities. Nevertheless, this did 
not happen when situations involving the odd power of the tangent and the even 

power of the secant were presented. Here, the difficulty was in remembering 

the correct Pythagorean identity and carrying out adequate algebraic processes 

to apply the respective substitution that would allow visualising the integral in 
an easier way to calculate. The above allows us to infer that students maintain 

such a deep-rooted idealisation of the mechanistic processes that it prevents 

them from identifying that establishing relationships is essential in higher 
mathematics because they enhance the development of understanding and 

knowledge of mathematics (Hiebert & Carpenter, 1992). 

With the advancement of the investigation, we observed that the 
students progressively developed relational thinking as a tool that allowed them 

to identify what type of mathematical knowledge they used and how they 

applied those mathematical concepts. They could then face various calculus 

situations where they transformed algebraic expressions or which arithmetic, 
algebraic, and geometric expressions were related, which entails using flexible 

strategies. In terms of Carpenter et al. (2005), thinking in this way requires that 

the students “look”(consider) the whole situation to identify a significant 
number of relationships before starting to calculate and become aware, at least 

implicitly, of properties and relationships.  

The students used relational thinking to simplify calculations, build and 

learn concepts, and extend procedures to problem situations typical of their 
engineering formation, which helped us understand that they give a new 

meaning to integration as an operator that calculates and as a tool when they 

identify the integral function as 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 , dependent on the upper limit 

of the integration. Work focused on the previously acquired knowledge with 

the understanding of the structure of the proposed situations and the 
relationships that underlie them. We observe the acquisition of implicit 

knowledge of algorithms, properties, rules, and operations. The activities 

focused on relational thinking made it easier to explicit this procedural 
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knowledge exposed in the answers offered. In short, it favoured significant 

mathematics learning, particularly relating trigonometry as one more element 

of the AMT, as an organised and systematic system that becomes a tool to deal 

with everyday problem situations.  

 The use of technology in mathematics education allows for explaining 

and visualising definitions, concepts, theorems, sketching graphs, etc., which, 
at the time, students had difficulty understanding. GeoGebra is applicable when 

conventional and unconventional surfaces must be sketched, especially when 

the use of parametric surfaces based on spherical coordinates is required. 
However, the use of this type and instruments cannot replace the constructions, 

demonstrations, and formalisations that the teacher must execute with the 

students for them to achieve meaning from those mathematical entities that they 

learn.  
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