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ABSTRACT 

Background: One of the explicit objectives of school mathematics is to 

prepare students to make decisions. However, decision-making itself is not usually 

considered curriculum content. Recently, the Chilean school mathematics curriculum 

incorporated decision-making in contexts of uncertainty as a teaching object in 

differentiated secondary education. Objective: Discuss from a socioepistemological 

perspective how the teaching of decision-making in uncertainty is proposed in the 

Chilean curriculum, considering both the study programme and the official school 

text. Design: Based on a qualitative methodology, thematic analysis is used to identify 

historical-epistemological criteria and content analysis to review the activities of the 

curriculum texts. Setting and participants: Three textual corpora are analysed: a 

historical work, the syllabus, and the official school text. Data collection and 

analysis: By applying interpretative content analysis, the activities proposed for 

teaching decision-making in contexts of uncertainty are analysed, considering as a 

criterion the epistemological distinction between single-case decisions and decision-

making processes, as well as the use of a priori and a posteriori probabilities. Results: 

The textbook provides more tasks or questions involving the student in decision-

making than the syllabus, but not always explicitly, emphasizing calculation and 

formulas. Based on the defined analysis criteria, it was possible to classify all the 

activities except one related to the Monty Hall problem. Conclusions: The activities 

proposed in both the textbook and the syllabus almost exclusively promote single-

case decisions, with a predominance of a posteriori probabilites, which generates a 

conceptual overlap between chance and randomness. 

Keywords: Decision-making; Random; School curriculum; Randomness; 

Uncertainty. 
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Toma de decisiones en situaciones de incerteza como un saber matemático 

escolar 

 

RESUMEN 

Contexto: Uno de los objetivos explícitos de las matemáticas escolares es 

preparar a los estudiantes para la toma de decisiones. Sin embargo, la toma de 

decisiones por sí misma no suele ser considerada un contenido curricular. 

Recientemente el currículo escolar chileno de matemáticas incorpora la toma de 

decisiones en contextos de incerteza como un objeto de enseñanza en la formación 

diferenciada de educación secundaria. Objetivo: Discutir desde una perspectiva 

socioempistemológica cómo se propone la enseñanza de la toma de decisiones en 

contexto de incerteza en el currículum chileno, teniendo en cuenta tanto el programa 

de estudio como el texto escolar oficial. Diseño: A partir de una metodología 

cualitativa, se usa análisis temático para identificar criterios históricos-

epistemológicos y análisis de contenido para la revisión de las actividades de los 

textos curriculares. Entorno y participantes: Se analizan 3 corpus textuales: una 

obra histórica, el programa de estudio y el texto escolar oficial. Recopilación y 

análisis de datos: Aplicando el análisis de contenido interpretativo, se analizan las 

actividades propuestas para la enseñanza de la toma de decisiones en contextos de 

incerteza, considerando como criterio la distinción epistemológica entre decisiones de 

un solo caso y procesos de toma de decisiones, así como también el uso de 

probabilidades a priori y a posteriori. Resultados: El texto escolar provee una mayor 

proporción de tareas o preguntas para involucrar al estudiante en la toma de 

decisiones que el programa de estudio, pero no siempre de manera explícita; con 

énfasis en lo calculatorio y uso de fórmulas. Con base en los criterios de análisis 

definidos, fue posible clasificar todas las actividades excepto una, relacionada con el 

problema Monty Hall. Conclusiones: Las actividades propuestas tanto en el texto 

escolar como en el programa de estudio promueven casi exclusivamente decisiones de 

un solo caso, con predominio de probabilidades a posteriori, lo que genera una 

superposición conceptual entre azar y aleatoriedad. 

Palabras clave: Toma de decisiones; Azar; Currículum Escolar; 

Aleatoriedad; Incertidumbre. 

 

INTRODUCTION 

The global health contingency triggered by the pandemic, among its 

multiple human, social, economic, and philosophical consequences, clearly 

showed how vital mathematical and statistical skills are for decision-making. 

Overall, the challenges of the 21st century demand that data and knowledge, 

widely available in a global era, be used to improve decision-making at all 

levels with a sense of governance (Lopez-Claros et al., 2020). Decision-

making is intrinsic to everyday life and becomes critical, especially in 
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uncertainty. Uncertainty may be due to the nature of the phenomenon itself or 

the lack of ability or knowledge of the individuals interacting with the 

phenomenon (Helton, 1997). According to van der Bles et al. (2019), the 

knowledge on which decisions are based is always surrounded by different 

types and degrees of uncertainty. Hence its ubiquitous nature.  

In education, international standards have highlighted that school 

mathematics must prepare future citizens to face the problems and challenges 

of daily life (Organization for Economic Co-operation and Development 

[OECD], 2010, 2019). In this sense, it is reasonable to expect that such 

preparation includes the development of decision-making skills in contexts of 

uncertainty. Although notions such as probability, randomness, data, chance, 

uncertainty, and risk are combined in probability and statistics teaching 

(Sriraman & Chernoff, 2020), they are not necessarily equivalent concepts. 

For example, when probability estimates or calculations are not available, we 

speak of ―decision-making under uncertainty‖, rather than ―decision-making 

under risk‖ (Knight, 1921). These, like other differences around decision-

making, have social and epistemological bases that require attention. 

Research has shown links between the development of probabilistic 

thinking and the ability to reason, make inferences and make decisions under 

uncertainty in preschool (Denison & Xu, 2014), primary (Malaspina & 

Malaspina, 2020), and secondary school students (Vergara-Gómez et al., 

2020), as well as in mathematics teachers (Elbehary, 2021). Likewise, from 

statistics, the importance of its teaching at the school level is in preparing 

citizens who are capable of making real decisions based on data (Lajoie, 

1998; Shaughnessy, 2019). In this way, making appropriate decisions when 

facing uncertainty is a formative need, which is usually addressed by school 

education by including probability and statistics in the curricula, from primary 

to higher education (Batanero, 2020). 

Regarding the role of teaching and learning uncertainty, Pratt and 

Kazak (2017) conducted a review of the literature, finding three axes of 

development: heuristics and biases, conceptual and experiential commitment 

to uncertainty, and a modeling perspective on probability, the first axis being 

related to the study of decision-making processes mainly. Although the 

presence of uncertainty is permanent in different everyday contexts, its 

mathematization emerged late, thanks to the development of probability 

(Greer & Mukhopadhy, 2005). Hence, uncertainty and probability are 

approached in a close relationship.  
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Decisions in situations of uncertainty are essentially bets whose 

results are determined both by the choices made by the people involved and 

by the specificity of the associated random procedure (Cortada, 2008). At the 

same time, uncertain situations are characterized by the impossibility of 

calculating the probabilities of all cases and, as such, by decision-making 

processes that cannot be completely deductive or inductive but rather tend to 

be heuristic (Mousavi & Gigerenzer, 2017). A heuristic ―is a strategy that 

ignores some information in favor of quicker, more frugal, and/or accurate 

decisions than more complex methods‖ (Gigerenzer & Gaissmaier, 2011, p. 

454). In short, the strategies we use and the justifications we develop for 

decision-making in contexts of uncertainty require broader explanatory 

frameworks. 

Nowadays, given the prominence that decision-making has acquired 

in contexts of uncertainty, we consider it essential to reflect on this issue from 

mathematics and statistics education. Some research suggests that judgments 

based on simple heuristics, common sense, or intuition are often erroneous in 

making decisions (Garfield & Ahlgren, 1988; Shaughnessy et al., 1996). 

However, intuitive ideas are persistent, even when they are recognized to be 

false and have been subjected to corrective teaching processes (Garfield & 

Ben-Zvi, 2007). Thus, the relationship between decision-making in contexts 

of uncertainty and the use of intuition is a recurring topic of study. In fact, the 

discussion about the conflicts that arise between intuition and reason when 

decisions are made in contexts of uncertainty dates back to the work of 

Kahneman and Tversky (1973), i.e., it has been developing for almost half a 

century. In these early investigations, intuitive estimates were considered a 

detrimental resource for drawing inferences. However, more recent research 

(Arkes et al., 2016; Kubricht et al., 2017) has shown that to solve problems of 

great complexity and uncertainty, intuition and heuristic strategies are valid 

resources that facilitate the drawing of inferences. 

In particular, considering learning situations at the school level, the 

relationship between decision-making processes, both under risk and 

uncertainty, and the development of probabilistic thinking has been analysed 

(for example, Brovcnik & Kapadia, 2011; Martignon, 2014; Bennett, 2014). 

In general terms, these studies agree that, although decision-making in 

situations of uncertainty requires probabilistic reasoning, other elements not 

based on formal probability calculations but on simple strategies and intuitive 

strategies prevail. Indeed, intuition has been one of the most complex aspects 

to deal with during the construction of probabilistic concepts (Fischbein, 

1975; Gandhi, 2018). Thus, although several studies address decision-making 



 

129  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024  

under uncertainty in teaching and learning situations at the level of 

mathematics or school statistics (Shi, 2000; Borovcnik, 2015; Serradó-Bayés, 

2018; Ingram, 2022), we still lack investigations inquiring into their historical 

and epistemological bases of decision-making and its eventual didactic scope.  

For decades, Chile had not considered decision-making processes in 

contexts of uncertainty in the national curriculum. In 2020, this topic was 

incorporated into the differentiated scientific-humanistic mathematics 

education plan for the last two years of compulsory schooling. Noticing this 

background, we took an interest in understanding the types of decision-

making in contexts of uncertainty, along with the possible related probabilistic 

knowledge, starting from a historical epistemological perspective. From this 

conceptual base, we reviewed and classified all the activities proposed in the 

school textbook and syllabus, which are the documents that support the 

implementation of the new subject proposed by the Ministry of Education of 

Chile [MINEDUC]. We identified the activities that used contexts or 

phenomena associated with situations of uncertainty and how they 

incorporated authentic questions and/or tasks to encourage decision-making. 

 

THEORETICAL FRAMEWORK 

The socioepistemological theory of mathematics education (STEM) 

addresses ―the phenomena of production and dissemination of knowledge 

from a multiple perspective of the dimensions of knowledge in use, through 

the study of the interaction between epistemology, sociocultural dimension 

(emphasis on the value of use), associated cognitive processes, and 

institutionalization mechanisms through teaching (cultural heritage)‖ 

(Cantoral, 2019, p. 791). From this perspective, the present study considers 

decision-making processes as mathematical-statistical knowledge in use. The 

STEM proposes to problematize those deliberate processes that allow the 

construction, exchange, and use of mathematical knowledge. In this way, 

knowledge in use ―is constructed, reconstructed, signified and resignified; it is 

found in time and space; it is explored from the point of view of those who 

learn, those who invent, those who use‖ (Cantoral, 2013, p. 97), hence its 

analysis is not limited to the borders of school mathematical knowledge. 

Emphasis is placed on understanding decision-making as a human activity, 

exploring it in its social, cultural, and historical dimensions. As such, 

decision-making constitutes an important part of everyday life, which operates 

at both individual, collective, and institutional layers and puts into use 

different knowledge and skills from various disciplines. Given the object of 
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study, we focus specifically on the statistical-mathematical knowledge 

involved in school mathematics. 

One way to carry out a didactic analysis in STEM is to study this 

statistical-mathematical knowledge in use by analyzing its historicisation and 

dialectisation (Cantoral, 2013). When historicising, knowledge in use is 

located in time and space, explored from the point of view of those who 

invent, learn, and use it, assuming a historical, cultural, and institutional 

perspective (Cantoral, 2013). When conceiving the existence of knowledge in 

use in the continuous construction process, three fundamental moments of 

historicisation were identified:  genesis, development, and transversality (see 

Figure 1). 

 

Figure 1 

Scheme of the theoretical model to study the constitution of knowledge in use. 

(Espinoza et al., 2018, p.252) 

 

 

In the genesis, aspects of the historicisation related to the production 

of knowledge in use and its germinal meanings are explored; in development, 

its historical trajectory is analysed over time, and in the transversality, we 
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study how knowledge is used in different human practices (Espinoza et al., 

2018). 

In this research, we carry out historicisation by specifically analysing 

the germinal moment of knowledge in use, in which the interest is to get 

situated in the contexts, intentions, and specific activities of the human being 

that accompanied and promoted knowledge production (Espinoza et al., 

2018). The analysis of germinal moments is crucial, given that we can explore 

the constitutive and essential meaning of mathematical knowledge in use. 

Along these lines, STEM understands resignification as the progressive 

appropriation of meanings in specific contexts (Cantoral, 2013). 

We recognise germinal meanings as fundamental pieces to 

understanding knowledge in use (Espinoza et al., 2018). However, these are 

often diffuse or invisible in school mathematics and statistics today (Cantoral, 

2013). For this reason, dialectisation is proposed as a didactic analysis 

process in which the results of historicisation contrast with the way in which 

specific pieces of mathematical-statistical knowledge are conceived, 

organised, and taught in schools in search of generating didactic innovations.  

 

METHODOLOGY 

The research approach is qualitative, with a descriptive scope. 

Regarding the methods in the phase of historicisation, through a documentary 

search in the French digital library Gallica, we identified a book that is a 

precursor to the study of decision-making under uncertainty. The work, titled 

Exposition de la théorie des chances et des probabilités [Exposition of the 

theory of chances and probabilities], was published in 1843 by the 

mathematician and economist Antoine Augustin Cournot (1801-1877). 

This work not only sums up Cournot’s work on probability theory but 

also exposes an unprecedented epistemology to explain the relationship 

between the theories that constitute scientific knowledge and empirical reality 

(Martin, 2007). It also provides a philosophical view on how to apply 

probabilities and statistics to understand better those problems that became 

increasingly relevant in the 19th century: demography, valuation of life 

insurance premiums, financial market behavior, games of chance, and 

decision-making in civil courts, among others. 

We scrutinised the book under the hybrid approach to thematic 

analysis (Boyatzis, 1998), articulating an anatomy of the work and its 
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production context. Coding and the formulation of themes were carried out 

using the ATLAS.ti 8 software. The hybrid approach to thematic analysis 

considers deductive steps (literature-driven) and inductive steps (data-driven), 

described in Table 1. 

 

Table 1 

Stages and steps for the hybrid approach to thematic analysis of the work 

Exposition de la théorie des chances et des probabilités (1843).  Adapted from 

Boyatzis (1998). 

Stages of the 

hybrid approach 

to thematic 

analysis 

Steps 
Type of 

analysis 

I. Preliminary 

review (primitive 

coding) 

1. Delimitation of semantic 

units. 

2. Selection of samples for 

preliminary inductive coding. 

3. Complete preliminary 

inductive coding. 

Inductive 

II. Theme and 

Code Development 

(Thematic Coding) 

1. Reduction of raw 

information. 

2. Identification of relationships 

between primitive codes. 

Inductive 

3. Refine and validate groups of 

primitive codes. 

4. Theme through relationships 

Deductive 

III. Theme 

evaluation 

1. Internal qualitative evaluation 

of the themes. 

2. Qualitative validation of the 

themes, through expert analysis. 

Deductive 

 

From this analysis, we obtained 3,000 codes organized into 45 groups, 

which gave rise to six themes through the relationship and network functions 

of ATLAS.ti 8. The six themes were randomness, variability, distribution, 

contexts, indeterministic laws, and decision. Each of these themes reported 

characteristic meanings of the beginnings of the mathematisation of decision-
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making processes in contexts of uncertainty. For this research, we combine 

the germinal meanings provided by the themes of randomness and decision, 

which allow the construction of a conceptual basis that recognises authentic 

random situations that demand decision-making processes. 

In relation to the dialectisation phase, we do an interpretative content 

analysis (Drisko & Maschi, 2016) to analyse the subject Probabilities and 

Descriptive and Inferential Statistics proposed by the Chilean curriculum for 

differentiated humanistic, scientific education, corresponding to the levels of 

3rd and 4th grades of secondary education (16 and 17 years old). This subject 

addresses reasoning and decision-making in situations of uncertainty. The 

analysis considers the review and classification of all the activities contained 

in the syllabus and the decision-making unit of the school textbook. Since 

interpretive content analysis addresses both the manifest and the latent, it 

begins with an emergent coding that flexibly contrasts with the categories 

defined a priori (Drisko & Maschi, 2016). In this way, a preliminary review of 

the data is carried out, allowing us to identify the common structure between 

both corpora (programme and learning unit of the school text). Then, we 

apply the classification criteria defined deductively from the theory.  

As a classification criterion, we considered the presence or the 

absence of two aspects: 1. Contexts or phenomena of uncertainty, 2. Questions 

or tasks that invite or require students to make decisions. To identify the 

second point, we used the meanings and characteristics of the combination of 

the themes decision and randomness, resulting from the previously reported 

thematic analysis. 

To organise the recounting and visualisation, we contemplated the 

stages and steps described in Table 2. 

 

Table 2.  

Stages and steps used for the content analysis of the curriculum resources 

associated with the component Probabilities and Descriptive and Inferential 

Statistics. 

Analysis stages Steps 

I. Identification  1. Thematic units. 

2. Specific learning 

objectives per thematic 

unit. 
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3. Lessons by thematic 

unit. 

4. Mathematical-statistical 

activities per lesson.  

II. Description 1. Mathematical-statistical 

activities per lesson. 

2. Contexts or phenomena 

of uncertainty that frame 

each activity. 

3. Questions or tasks 

contained in each 

activity.  

III. Classification 1. According to the 

presence or absence of 

contexts or phenomena 

of uncertainty. 

2. According to the 

presence/absence of 

questions or 

mathematical-statistical 

tasks that involve the 

student in decision-

making. 

 

To classify the questions or tasks contained in the activities, we ask 

the following: Is this a question or task that authentically involves the student 

in decision-making in contexts of uncertainty? We consider that the answer is 

affirmative if the activity meets the following conditions: 

1. It challenges the student to make a decision in a situation or 

context of uncertainty. 

2. The decision is required to solve a problem or guide the solution 

of a problem. 

3. It requires the student to provide a justification or rationale for the 

decision. 

4. It cannot be directly replaced by a calculation question.  
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RESULTS AND ANALYSIS   

First, we will present the results associated with the process of 

historicisation and then the process of dialectisation, following what was 

stated in the theoretical framework.  

 

Regarding historicisation 

Regarding the germinal meanings obtained from the 

socioepistemological analysis, the combination of decision and randomness 

can be seen in Figure 2.  

 

Figure 2 

Thematic network connecting the characteristic meanings of randomness and 

decision.  

 

 

The decision brought together five groups of codes (in yellow) and 

the randomness another five groups of codes (in green). According to the 

analysis, making a decision mobilises known knowledge and methods while 

requiring the coordination of intuition and reason. The latter is specifically 

due to the presence of uncertainty. Likewise, making a decision leads us to 

observe and understand the phenomenon so we can speculate and develop 

hypotheses, which could eventually be consolidated into new knowledge and 

methods. Systematic observation of the phenomenon allows us to distinguish 
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randomness from causality and thus evaluate which possibilities of occurrence 

could result in favourable opportunities. On the contrary, given the 

impossibility of conducting a systematic, or at least extensive, observation of 

the phenomenon, we can only perceive chance and act intuitively.  

 

Difference between chance and randomness 

The work Exposition de la théorie des chances et des probabilités 

analyses different types of problems, which are solved through the study of 

the possibilities of error or risk in decisions under uncertainty. Cournot’s work 

provides us with a conceptual difference between chance and randomness, 

based mainly on the notion of independence of a series of occurrences or 

causes. On the one hand, Cournot states that chance is not the absence of 

cause or a state of ignorance about causes; instead, it is the multiplicity of 

causes without dependence or a traceable relationship between them that 

appear in the occurrence of a specific event (Cournot, 1843). On the other 

hand, for the mathematician, randomness is a more complex notion; it is 

related to how we perceive and observe phenomena to analyse them. 

Cournot gives us an example. The trajectory of a projectile can be 

modeled by a parabolic curve, but this does not necessarily mean that the 

behaviour of the projectile results perfectly in a quadratic function. Similarly, 

random phenomena can be explained through models, in which the degree of 

correspondence can be improved by increasing the number of data and the 

quality of the sample. In fact, we start to notice certain regularities when we 

have large data sets or enough processes of actions/events over time, properly 

collected and systematised. In this way, randomness is the regular expression 

that arises from the systematic registration of chance events, which occur 

under similar conditions of the same phenomenon (Cournot, 1843). Therefore, 

randomness can be made explicit through laws or properties, and its 

distribution takes on a form as the phenomenon is studied more completely. 

This distinction between chance and randomness turned out to be 

essential in the germinal mathematisation of decision-making processes in 

contexts of uncertainty since it allowed the objective study of different 

random phenomena based on laws such as the law of error or the law of large 

numbers (Vergara-Gómez, 2020). Specifically, it was necessary to separate the 

fortuitous occurrence of a specific event in time —difficult to anticipate or 

measure— from the regular expression acquired by the registration of a large 

number of fortuitous occurrences under equal phenomenological conditions 
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—susceptible to being subjected to measurements and mathematical and/or 

statistical analysis. 

 

Difference between single-case decisions and decision-making 

processes  

Although Cournot never mentions the term model in Exposition de la 

théorie des chances et des probabilités nor in his other works (Walliser, 

2007), every time he applies theoretical ideas to study randomness, he uses 

some simple examples, from which he builds a more general analytical 

principle or expression. In this way, it simplifies the phenomenon, assuming 

that events are repeated many times under similar circumstances. The 

phenomenon, then, is treated as a collection of independent experiences, 

where each one, although unpredictable, determines the same type of possible 

outcomes. The range of possibilities could certainly be broader, but the 

observer can focus their interest on one of them, simplifying the analysis. 

Cournot begins with the assumption that events A’, A”,…, A
n
  are  repetitions 

of event A and that events B’, B”,..., B
n
  are repetitions of the complementary 

event B. 

The value of the probabilities of these events can be defined, as the 

mathematician explains, as either a priori or a  posteriori. In both cases, the 

probability measure is obtained through the ratio between the number of 

favourable possibilities and the total number of opportunities. However, in the 

a priori probability, all abstractly possible combinations are considered, while 

in the a posteriori probability, the frequencies of known outcomes of random 

events are contemplated (Cournot, 1843). The mathematician explains that 

these probabilities are approximated only when the value of the number of 

trials is large enough. Hence the importance of having many trials for the 

randomised experiment one wants to analyse. 

From the a priori perspective, if one assumes that the probabilities p 

and q of the events A and B, respectively, remain significantly invariant during 

the process, then, for m attempts, the product (p + q)(p’ + q’)(p” + q”)... is 

converted to (p+q)
 m

, whose general analysis can be carried out using 

Newton’s binomial. This idea allowed Cournot not only to calculate specific 

probabilities but also to determine a minimum or maximum number of 

experiments to reach a previously established specific probability indicator. A 

simple and representative example of how this idea establishes the basis for a 

distinction between decision-making processes and single-case decisions is 
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given using a game of dice. Cournot proposed a game with two dice in which 

one wins by rolling a double 6. Instead of asking, ―What is the probability of 

winning?‖ which implicitly assumes a random trial, he asked: ―How many 

minimum trials are necessary to ensure a 1/2 probability of obtaining the 

event of interest at least once?‖ Note that a random process of many actions is 

needed to answer the question. In response, Cournot proposed the equation 

that can be seen in Figure 3. 

 

Figure 3 

Proposed logarithmic equation to determine a minimum number of attempts. 

Cournot (1843, p. 48). 

 

 

Based on the equation expressed in Figure 3, Cournot concludes that 

at least 24 attempts are necessary to obtain at least one successful event. 

Round the result to 24 due to the discrete nature of the experiment. We must 

keep in mind that the cumulative probability symmetrically around the mean, 

as Cournot proposes for this case, is only 0.5. For example, if one wanted to 

ensure a higher cumulative probability, say 0.75, the number of trials would 

increase to 49. This cumulative probability is based on sampling logic. A 

probability P of 0.5 means that, for a large number of samples, for each of 24 

trials or events, approximately half would present at least one ―double six‖ 

event. This type of analysis promotes the understanding of probability in the 

scenario of randomness, not chance. Consequently, Cournot says it is possible 

to make reliable a priori probabilistic estimates only when one can decide the 

number of trials.  

Cournot uses a posteriori perspective mainly in those random events 

whose possible combinations cannot be determined arithmetically, such as 

those that derive from natural or social phenomena. In these cases, the 
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multiple variables that provide probability laws for the values that the random 

magnitude takes are almost always of an unknown nature (Cournot, 1843). At 

that time, it was practically impossible to subject the occurrence of such 

events to theoretical calculation. The calculation of a posteriori probabilities 

makes sense when a sufficiently large amount of data has been systematically 

collected. Currently, this would be equivalent to the appropriate use of 

sampling and recording techniques. Knowing the a posteriori probabilities 

facilitates decision-making, as they reveal possible trends or shapes in the 

distribution of frequencies, which, in turn, allows evaluating possible 

readjustments in precision, increasing or improving the registration of events. 

One example is the decision-making processes of civil justice courts in France 

in Cournot’s time. The French justice system kept a systematic record of 

rulings and appeals. A group of judges handed down many sentences over 

several years, which required a predetermined majority of votes. 

Thus, the calculation of the a priori or a posteriori probability is 

relevant, depending on the nature of the situation, with the decision-making 

processes being those that give meaning to choosing one or another 

perspective. Thus, on the one hand, the a priori probabilities allow us to know 

the minimum number of trials required to make a favourable decision, and, on 

the other hand, the a posteriori probabilities inform about the frequencies of 

events, favouring decision-making regarding a set of future events. At the 

origins of the mathematisation of decision-making, decision-making 

processes stand out over single-case decisions. The processes involve several 

trials or recordings of events, in which the calculation of probabilities arises to 

estimate the convenient number of trials or events. Unlike single-case 

decisions, where probabilities are calculated to estimate the possibility of a 

specific event occurring, decision-making processes take a more global look 

at the number of attempts and the distribution of results as the number of 

events increases. 

 

Regarding  dialectisation 

The school textbook, edited especially for the Ministry of Education 

and for free distribution countrywide, is structured in four units, the first of 

which is called ―Decision-making in situations of uncertainty‖, and comprises 

six lessons. In total, we reviewed 49 activities. The Probability and 

Descriptive and Inferential Statistics syllabus (MINEDUC, 2021) is structured 

in four units (see Table 3), each with four main lessons and between five and 

12 evaluation lessons. In total, 193 activities were reviewed. Table 3 reports 
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the results of the syllabus review, and Table 4 reports the results of the 

students’ text review. 

 

Table 3 

Description of the units, learning objectives, and lessons of the syllabus, 

together with the classification of activities by lesson. 

Unit 
Learning 

objective (LO) 
Lessons A B C 

1. What do 

the graphs 

say? Critical 

analysis of 

information 

Argue and 

communicate 

decisions based 

on the critical 

analysis of 

information 

present in 

histograms, 

frequency 

polygons, 

cumulative 

frequency, box 

diagrams, and 

point clouds, 

including digital 

tools (LO1). 

 

1.1 Critically 

analyse 

information in 

the context of 

vital statistics 

(life 

expectancy). 

16 1 16 

1.2 How to 

statistically 

represent data 

and 

phenomena? 

(histograms in 

different 

contexts). 

13 1 13 

1.3 Make 

decisions from 

box plots (box 

plots in 

different 

contexts). 

11  0 11  

1.4 Scattered 

or related 

data? (point 

clouds in 

different 

contexts). 

9 0 9 

1.5 

Evaluation. 

5 0 5 
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Total 54 2 54 

2. 

Understand 

the sample 

mean, 

dispersion 

measures and 

correlation 

Solve problems 

that involve the 

concepts of 

sample mean, 

standard 

deviation, 

variance, 

coefficient of 

variation, and 

sample 

correlation 

between two 

variables, both in 

handwriting and 

using digital 

technological 

tools (LO2) 

2.1 Analyse 

graphic 

information in 

different 

contexts. 

11  0 9 

2.2 The 

sample mean 

and the 

population 

mean in 

different 

contexts. 

13 0 13 

2.3 Use 

sample 

correlation in 

social science 

contexts. 

8 1 8 

2.4 Apply the 

linear 

correlation 

model in 

population 

censuses. 

12  0 12  

2.5 Evaluation 12  1 9 

Total 56 2 51 

3. Modelling 

of 

phenomena 

using the 

probabilities 

of binomial 

or normal 

distributions 

Model everyday 

phenomena or 

situations in the 

scientific and 

social fields, 

which require 

the calculation of 

probabilities and 

the application 

of binomial and 

3.1 Random 

experiments 

with Bernoulli 

and Binomial 

models. 

10 0 6 

3.2 

Understand 

the normal 

probability 

model. 

5 0 2 
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normal 

distributions 

(LO3) 

3.3 Apply the 

normal model 

in the 

transportation 

of people. 

13 1 13 

3.4 

Approximate 

the binomial 

distribution by 

the normal 

distribution 

9 1 7 

 

3.5. 

Evaluation 

12  1 11  

Total 49 3 39 

4. Make 

statistical 

inference 

Argue inferences 

about parameters 

(mean and 

variance) or 

characteristics of 

a population, 

based on data 

from a random 

sample, under 

the assumption 

of normality and 

applying 

procedures based 

on confidence 

intervals or 

hypothesis tests 

(LO4) 

4.1 Make 

inferences 

about the 

mean of a 

population 

using 

confidence 

intervals. 

4 0 1 

4.2 Inferences 

in different 

contexts using 

confidence 

intervals. 

5 0 5 

4.3 Develop a 

hypothesis 

and verify or 

reject it in 

different 

contexts. 

9 0 5 

4.4 Develop 

and verify or 

reject a 

hypothesis. 

7 0 7 

4.5. 9 1 8 
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Evaluation 

Total 34 1 26 

  Overall total  193 8 170 

Note: A indicates the number of total activities in the lesson; B indicates the number 

of activities that involve the student in decision-making; C indicates the number of 

activities that are based on contexts or phenomena of uncertainty. 

 

Table 4 

Description of the units, learning objectives, and lessons of the student text, 

along with the classification of activities. 

Unit 
Learning 

objective (LO) 
Lessons A B C 

1. Decision-

making in 

situations of 

uncertainty 

Decision-

making 

applying data 

dispersion 

measures. 

1.1 Height of the 

Chilean soccer 

team players and 

measurement of 

central tendency. 

1 1 1 

1.2 Calculate and 

interpret measures 

of central tendency, 

quartiles. Counting 

techniques. 

Classical 

probability 

calculus. 

6 0 5 

1.3 Dispersion 

measures. 

8 3 8 

1.4 Comparison of 

data sets. 

8 5 7 

Decision-

making 

applying 

conditional 

probabilities. 

1.5 Conditional 

probability. 

6 2 6 

1.6 Total 

probability. 

15 3 8 
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1.7 Assessment. 5 2 5 

Total 49 16 40 

Note: A indicates the number of total activities in the lesson; B indicates the number 

of activities that involve the student in decision-making; C indicates the number of 

activities that are based on contexts or phenomena of uncertainty. 

 

As shown in Table 3, the total of activities in the syllabus that invite 

students to make a decision is approximately 4.63% of the proposed activities 

(9 of 194), while in the textbook, they correspond to approximately 32.65% of 

the proposed activities (16 of 49). On the other hand, 88% and 82% of the 

activities in the syllabus and the textbook, respectively, evoke contexts or 

phenomena of uncertainty, showing that the context of uncertainty by itself is 

not enough to trigger decision-making. In total, we identified 24 activities that 

foster decision-making in contexts of uncertainty. Several make explicit 

reference to the notions of chance and randomness without a clear conceptual 

distinction. For example, concepts are used as synonyms in problems 

associated with sample selection. Furthermore, although the textbook 

provides a greater proportion of tasks or questions to involve the student in 

decision-making, many of these are not explicit and are presented after the 

tasks of calculating statistical or probabilistic measures, i.e., the activities 

associated with making decisions do not motivate the search for strategies, but 

rather emphasise calculations and formulas. It should be noted that the units 

and learning objectives refer to both statistics and probability. Hence, not all 

decision-making tasks appeal to probability calculus; however, several 

statistical tasks could be addressed by considering analysis of frequency 

distributions and, therefore, frequentist probabilities. In this way, it is possible 

to organize the activities by crossing criteria, as can be seen in Table 5.  

 

Table 5 

Classification of activities that involve the student in decision-making in the 

syllabus and the textbook. 

 

A priori 

probabilities 

A posteriori 

probabilities Total 

Statistics Probability Statistics Probability 
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S
y
ll

a
b

u
s 

Single 

case 

decisions 

0 3 4 0 7 

Decision-

making 

processes 

0 1 0 0 1 

T
ex

tb
o
o
k

 

Single 

case 

decisions 

0 3 12  0 15 

Decision-

making 

processes 

0 0 0 0 0 

 Total 0 7 16 0 23 
Note: A indicates the number of total activities in the lesson; B indicates the number 

of activities that involve the student in decision-making; C indicates the number of 

activities that are based on contexts or phenomena of uncertainty. 

 

Table 5 displays the predominance of activities associated with the 

use of a priori probabilities in matters of probability and a posteriori 

probabilities in statistics issues, the latter being more than double that of the 

former. Activities on statistical issues refer exclusively to decisions in a single 

case. Something similar happens with activities on probabilistic topics, except 

for a single activity. The activity belongs to lesson 3.4 of the syllabus and is 

based on the question, ―On what basis would you decide from what value of n 

it is worth using the normal approximation of the binomial distribution? 

Argue. Guess a rule of thumb to determine from what value of n it is 

convenient to use the normal approximation of the binomial‖. Although the 

activity does not explicitly make multiple attempts and does not offer a 

context of meaning, this is the only activity that has the potential to promote 

searching by varying the number of attempts or the size of the samples.  

Of the 24 activities that offer students the opportunity to make 

decisions, only 23 could be classified. The unclassified activity is from lesson 

1.5 ―Conditional probability‖ of the textbook, and refers to the Monty Hall 

problem. The reason why it was not possible to assign a category is that the 

activity presents a single-case decision, but the instructions for students to 
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analyse the situation are presented as a decision-making process. Furthermore, 

the first question expects students to use an a priori measure of probability; 

but, to verify whether their decision is correct, they must simulate the process, 

recording the data and using the frequencies to obtain a posteriori 

probabilities.  

The activity proposes that students analyse the problem in pairs, 

observing the image in Figure 4, where the contestant is Leonardo. 

 

Figure 4 

Illustration of the textbook. MINEDUC (2020, p. 22). 

 

 

In this activity, students must observe the following actions: 

―a) If you were Leonardo, what would you choose: change the 

door or stick to it? Why? Argue and discuss your answer with 

your classmates. 

b) Before Leonardo chooses a door, what is the probability 

that he chooses the door that has the car behind it? And that 

he chooses the one with the goat?‖ 

Next, to help students see that the probabilistically correct option is to 

change the decision, they are asked to use concrete materials to make cards 

that simulate the door options and use them to ―reproduce the situation several 
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times, counting the result and completing the information in a table‖ 

(MINEDUC, 2020, p.22). That is, while in the context of the well-known 

problem, the contestant can make a single choice, the explanation of the 

theoretically optimal decision is based on the assumption of a long series of 

games or choices. 

Although this activity involves simulating the decision several times 

using cards, in the actual context of the contest, the possibility of changing the 

decision is presented to the contestant as a unique opportunity. In this sense, 

analysing the possible results of the decision after several attempts is not 

consistent with the spirit of the contest. On the other hand, it is unclear how 

many attempts would be enough to evaluate the appropriateness of the 

decision. For example, if students, using the card mechanism, play 10 or 15 

times, the empirical variability is high, and, therefore, they could conclude, 

based on their data, that it is more convenient to maintain the first decision. 

Furthermore, the opportunity to change or preserve the decision occurs as an 

isolated event, not as a series of events. Thus, the presenter’s offer, of a 

peremptory nature, requires a quick response, which does not allow 

mechanisms for anticipation, comparison, or measurement. In the eyes of the 

decision maker, the outcome of their decision is fortuitous. And, in fact, for 

each isolated decision, not even the most precise of conditional probability 

calculations guarantees a correct decision; the outcome is genuinely 

determined by chance. 

Needless to say, given the nature of the contest, the decision 

corresponds to a single-case decision. If a student answers before doing the 

simulation –that it is more favourable not to change the decision–, there are no 

physical means to verify the supposed error of that decision other than 

showing what is behind the selected door. In single-case situations, there is no 

direct verification or success evaluation criterion for the estimated probability 

(Borovcnik, 2016). In this regard, we pose the following question: Why 

should we consider a decision as incorrect or suboptimal if, in factual terms, it 

is not possible to verify its effectiveness? The situation would be different if 

decisions could be evaluated in a decision-making process since, as Cournot 

proposes, in a process, one can analyse the minimum number of attempts 

necessary to ensure a specific cumulative probability. This cumulative 

probability must be estimated beforehand to overcome simple ―luck.‖ 
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DISCUSSION AND CONCLUSIONS 

There is a germinal moment for the mathematisation of decision-

making processes in contexts of uncertainty through the historical and 

epistemological analysis of Cournot’s (1843) work. This analysis reveals two 

conceptual distinctions of interest: the difference between chance and 

randomness and the difference between single-case decisions and decision-

making processes. These distinctions are interconnected and allow us to 

highlight the importance of discussing the epistemic foundation of decision-

making under uncertainty. Single-case decisions refer primarily to chance, 

while decision-making processes require randomness as a broader conceptual 

basis. 

From the analysis, the absence of an adequate epistemological basis to 

conceptually support the proposal of the Chilean school curriculum is evident, 

which translates into a predominance of activities associated with single-case 

decisions. Given that single-case decisions do not provide an adequate 

understanding of randomness, it is worth questioning the relevance of the 

treatment of these concepts in the Chilean school curriculum. Moore (1990) 

explains that ―phenomena that have uncertain individual results, but a regular 

pattern of results over many repetitions, are called random. Random is not 

synonymous with chance: […] probability is the branch of mathematics that 

describes randomness‖ (p. 98). Similarly, Yates et al. (1998) define a random 

phenomenon as one in which ―individual outcomes are uncertain, but there is 

nevertheless a regular distribution of outcomes over a large number of 

repetitions‖ (p. 314). These definitions, on the one hand, explain the statistical 

distinction between chance and randomness and, on the other hand, maintain 

epistemic correspondence with what Cournot postulated at the beginning of 

the systematisation of decision-making processes. 

Regarding the difference between single-case decisions and decision-

making processes, Baumann (2008) denies the normative force of 

probabilistic arguments for decisions made for a single case. In this same 

sense, Borovcnik (2015) explains that ―there is a big difference in the success 

of the strategy used if one has a single decision or decides similar cases 

repeatedly. What is good in a single decision may be bad for the repeated 

decision‖ (p. 127). Thus, in the decision-making field, the need to think 

probabilistically arises when decisions are presented as processes, the results 

of which help to connect theoretical or a priori probability with the frequentist 

or a posteriori probability. In this regard, Gigerenzer and Todd (1999) indicate 

that in contexts of uncertainty in which we are required to make a particular 
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decision, with little time to evaluate the possibilities and little reliable 

information quantitatively, intuition can be a valuable tool, especially if the 

calculation strategies are complex or time-consuming. This explains why, in 

single-case decisions, intuition compensates for effort and adapts more 

quickly to the context.  

It is noteworthy to say that the didactic assumption behind the activity 

associated with the Monty Hall problem presented in the Chilean textbook is 

not far from what has been proposed in previous research. For example, 

Saenen et al. (2018) propose the use of processes that simulate the random 

experiment to repeat the choice many times in order to overcome students’ 

difficulties in understanding the Monty Hall dilemma. In general, the research 

consulted uses the problem as input to analyse how people react to the 

dilemma, trying to find explanations for the prevalence of suboptimal 

decisions (Batanero et al., 2009; DiBattista, 2011; Elicer & Carrasco, 2017). 

However, from this socioepistemological analysis, we can argue that the 

contradictions appear because the context of the contest requires a single-case 

decision framed by chance. These meanings generate persistently intuitive and 

non-probabilistic answers. 

 

AUTHORSHIP CONTRIBUTION STATEMENT 

AVG developed the idea presented, adjusted the theoretical 

framework, adapted the methodology to this context, created the analysis 

categories, and collected and analysed the data. 

 

DATA AVAILABILITY STATEMENT 

Data supporting the results of this study will be made available by the 

corresponding author, AVG, upon reasonable request.  

 

ACKNOWLEDGEMENTS 

This work has been developed within the framework of the 

FONDECYT Initiation project N° º11240150, National Research and 

Development Agency of Chile (ANID). 

 



 

  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024 150 

REFERENCES 

Arkes, H., Gigerenzer, G., y Hertwig, R. (2016). How bad is incoherence?. 

Decision, 31(1), 20-39. https://doi.org/10.1037/dec0000043 

Batanero, C. (2020). Probability teaching and learning. In: Lerman S. (eds.) 

Encyclopedia of Mathematics Education (pp. 682-686). Springer. 

Batanero, C., Fernández, J.F., y Contreras, J.M. (2009). Un análisis semiótico 

del problema Monty Hall e implicaciones didácticas. Suma: Revista 

sobre Enseñanza y Aprendizaje de las Matemáticas, (63), 11-18. 

Baumann, P. (2008). Single-case probabilities and the case of Monty Hall: 

Levy’s view. Synthese, 162(2), 265-273. 

https://doi.org/10.1007/s11229-007-9185-6 

Bennett, D. (2014). Sticking to your guns: a flawed heuristic for probabilistic 

decision-making. In E.J. Chernoff, & B. Sriraman. (eds.), 

Probabilistic Thinking (pp. 261-281). Springer. 

https://doi.org/10.1007/978-94-007-7155-0_14 

Borovcnik, M. (2015). Risk and decision making: The ―logic‖ of probability. 

The Mathematics Enthusiast, 12(1), 113-139. 

https://doi.org/10.54870/1551-3440.1339 

Borovcnik, M. (2016). Probabilistic thinking and probability literacy in the 

context of risk. Educação Matemática Pesquisa: Revista do 

Programa de Estudos Pós-Graduados em Educação 

Matemática, 18(3), 1491-1516. 

Borovcnik, M., y Kapadia, R. (2011). Modelling in probability and statistics. 

En J. Maasz, & J. O'Donoghue, J. (eds.), Real-World Problems for 

Secondary School Mathematics Students (pp. 1-43). Sense Publishers.  

https://doi.org/10.1007/978-94-6091-543-7_1 

Boyatzis, R. (1998). Transforming qualitative information: Thematic analysis 

and code development. Sage Publications. 

Cantoral R. (2019) Socioepistemology in Mathematics Education. In: Lerman 

S. (eds.) Encyclopedia of Mathematics Education (pp. 790-797). 

Springer, Cham. https://doi.org/10.1007/978-3-319-77487-9_100041-

1 

https://doi.org/10.1037/dec0000043
https://doi.org/10.1007/s11229-007-9185-6
https://doi.org/10.1007/978-94-007-7155-0_14
https://doi.org/10.54870/1551-3440.1339
https://doi.org/10.1007/978-94-6091-543-7_1
https://doi.org/10.1007/978-3-319-77487-9_100041-1
https://doi.org/10.1007/978-3-319-77487-9_100041-1


 

151  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024  

Cantoral, R. (2013). Teoría Socioepistemológica de la Matemática Educativa. 

Estudios sobre construcción social del conocimiento. Editorial Gedisa 

SA. 

Cortada de Kohan, N. (2008). Los sesgos cognitivos en la toma de 

decisiones. International Journal of Psychological Research, 1(1), 

68–73. https://doi.org/10.21500/20112084.968 

Cournot, A.A. (1843). Exposition de la théorie des chances et des 

probabilités. Hachette. 

Denison, S., & Xu, F. (2014). The origins of probabilistic inference in human 

infants. Cognition, 130(3), 335-347. 

https://doi.org/10.1016/j.cognition.2013.12.001 

Drisko, J. W., & Maschi, T. (2016). Content analysis. Pocket Guide to Social 

Work Research Methods. 

diBattista, D. (2011). Evaluación de un objeto de aprendizaje digital para el 

dilema de Monty Hall.  Enseñanza de la Psicología, 38(1), 53-59. 

https://doi.org/10.1177/0098628310390916 

Elbehary, S. G. (2021). Reasoning under uncertainty within the context of 

probability education: A case study of preservice mathematics 

teachers. Pythagoras, 42(1), 630. 

https://doi.org/10.4102/pythagoras.v42i1.630 

Elicer, R., y Carrasco, E. (2017). Conditional probability as a decision-

making tool: A didactic sequence. In T. Dooley, & G. Gueudet (eds.), 

CERME 10 (pp. 748-755). https://hal.archives-ouvertes.fr/hal-

01927857 

Espinoza-Ramírez, L., Vergara-Gómez, A., & Valenzuela-Zúñiga, D. (2018). 

Geometría en la práctica cotidiana: la medición de distancias 

inaccesibles en una obra del siglo XVI. Revista latinoamericana de 

investigación en matemática educativa, 21(3), 247-274. 

https://doi.org/10.12802/relime.18.2131 

Fischbein, E. (1975). The intuitive sources of probability thinking in children. 

Reidel 

Gandhi, H. (2018). Understanding Children’s Meanings of Randomness in 

Relation to Random Generators. In C. Batanero, & E. J. Chernoff 

(eds.), Teaching and Learning Stochastics (pp.181-200). Springer.  

https://doi.org/10.1007/978-3-319-72871-1_11 

https://doi.org/10.21500/20112084.968
https://doi.org/10.1016/j.cognition.2013.12.001
https://doi.org/10.1177/0098628310390916
https://doi.org/10.4102/pythagoras.v42i1.630
https://hal.archives-ouvertes.fr/hal-01927857
https://hal.archives-ouvertes.fr/hal-01927857
https://doi.org/10.12802/relime.18.2131
https://doi.org/10.1007/978-3-319-72871-1_11


 

  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024 152 

Garfield, J., y Ahlgren, A. (1988). Difficulties in learning basic concepts in 

probability and statistics: Implications for research. Journal for 

research in Mathematics Education, 19(1), 44-63. 

https://doi.org/10.2307/749110 

Garfield, J., y Ben‐Zvi. D. (2007). How students learn statistics revisited: A 

current review of research on teaching and learning statistics. 

International statistical review, 75(3), 372-396. 

https://doi.org/10.1111/j.1751-5823.2007.00029.x 

Gigerenzer, G., y Todd, P.M. (1999). Fast and frugal heuristics: The adaptive 

toolbox. In G. Gigerenzer & P.M. Todd (eds.), Simple heuristics that 

make us smart (pp. 3-34). Oxford University Press. 

https://doi.org/10.1002/acp.793 

Gigerenzer, G., y Gaissmaier, W. (2011). Heuristic decision making. Annual 

review of psychology, 62, 451-482. https://doi.org/10.1146/annurev-

psych-120709-145346 

Helton, J. C. (1997). Uncertainty and sensitivity analysis in the presence of 

stochastic and subjective uncertainty. Journal of Statistical 

Computation and Simulation, 57(1-4), 3-76. 

https://doi.org/10.1080/00949659708811803 

Ingram, J. (2022): Randomness and probability: exploring student teachers’ 

conceptions. Mathematical Thinking and Learning, 1-19. 

https://doi.org/10.1080/10986065.2021.2016029 

Kahneman, D., y Tversky, A. (1973). On the psychology of prediction. 

Psychological review, 80(4), 237. https://doi.org/10.1037/h0034747 

Knight, F. H. (1921). Risk, uncertainty and profit. New York: Hart, Schaffner 

and Marx. 

Kubricht, J. R., Holyoak, K. J., y Lu, H. (2017). Intuitive physics: Current 

research and controversies. Trends in cognitive sciences, 21(10), 749-

759. https://doi.org/10.1016/j.tics.2017.06.002 

Lajoie, S. P. (1998). Reflections on statistics: Learning, teaching, and 

assessment in grades K-12 (studies in mathematical thinking and 

learning series). Lawrence Erlbaum Associates. 

Lopez-Claros, A., Dahl, A., & Groff, M. (2020). The Challenges of the 21st 

Century. In Global Governance and the Emergence of Global 

https://doi.org/10.2307/749110
https://doi.org/10.1111/j.1751-5823.2007.00029.x
https://doi.org/10.1002/acp.793
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1080/00949659708811803
https://doi.org/10.1080/10986065.2021.2016029
https://doi.org/10.1037/h0034747
https://doi.org/10.1016/j.tics.2017.06.002


 

153  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024  

Institutions for the 21st Century (pp. 3-29). Cambridge University 

Press. 

Malaspina, M., & Malaspina, U. (2020). Game invention as means to 

stimulate probabilistic thinking. Statistics Education Research 

Journal, 19(1), 57-72. https://doi.org/10.52041/serj.v19i1.119 

Martignon, L. (2014). Fostering children’s probabilistic reasoning and first 

elements of risk evaluation. In E. J. Chernoff, & B. Sriraman (eds.), 

Probabilistic Thinking (pp. 149-160). Springer. 

https://doi.org/10.1007/978-94-007-7155-0_9 

Ministerio de Educación de Chile. (2020). Programa de Estudio 3° o 4° 

Medio. Formación Matemática Diferenciada. Probabilidades y 

Estadísticas Descriptiva e Inferencial. UCE, Ministerio de Educación. 

https://www.curriculumnacional.cl/614/articles-140145_programa.pdf 

Ministerio de Educación de Chile. (2021). Texto del Estudiante, Matemática 

3° y 4°. Edición especial SM para el Ministerio de Educación. 

https://curriculumnacional.mineduc.cl/614/articles-

140074_recurso_1.pdf 

Moore, D.S. (1990). Uncertainty. In L. A. Steen (ed.), On the shoulders of 

giants: New approaches to numeracy (pp. 95-146). National 

Academy Press. https://doi.org/10.7326/0003-4819-113-11-902_1 

Mousavi, S., y Gigerenzer, G. (2017). Heuristics are tools for uncertainty. 

Homo Oeconomicus, 34(4), 361-379. https://doi.org/10.1007/s41412-

017-0058-z 

OECD (2019). Assessment and Analytical Framework PISA 2018, PISA. 

OECD Publishing. https://doi.org/10.1787/b25efab8-en 

OECD (2010). Learning Mathematics for Life: A Perspective from PISA. 

PISA, OECD Publishing. https://doi.org/10.1787/9789264075009-en 

Saenen, L., Heyvaert, M., Van Dooren, W., Schaeken, W., y Onghena, P. 

(2018). Why humans fail in solving the Monty Hall dilemma: A 

systematic review. Psychologica Belgica, 58(1), 128-158. 

https://doi.org/10.5334/pb.274 

Serradó Bayés, A. (2018). Reasoning in Decision Making Under Uncertainty 

and Decisions of Risk in a Game of Chance. ICME-13 Monographs, 

201–221. https://doi.org/10.1007/978-3-319-72871-1_12 

https://doi.org/10.52041/serj.v19i1.119
https://doi.org/10.1007/978-94-007-7155-0_9
https://www.curriculumnacional.cl/614/articles-140145_programa.pdf
https://curriculumnacional.mineduc.cl/614/articles-140074_recurso_1.pdf
https://curriculumnacional.mineduc.cl/614/articles-140074_recurso_1.pdf
https://doi.org/10.7326/0003-4819-113-11-902_1
https://doi.org/10.1007/s41412-017-0058-z
https://doi.org/10.1007/s41412-017-0058-z
https://doi.org/10.1787/b25efab8-en
https://doi.org/10.1787/9789264075009-en
https://doi.org/10.5334/pb.274
https://doi.org/10.1007/978-3-319-72871-1_12


 

  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024 154 

Shaughnessy, J. M. (2019). Recommendations about the big ideas in statistics 

education: A retrospective from curriculum and research. Cuadernos, 

18, 44-58. https://doi.org/10.22533/at.ed.2952206043 

Shaughnessy, J.M., Garfield, J., y Greer, B. (1996). Data handling. In A. 

Bishop, M. Clements, K. Clements, C. Keitel, J. Kilpatrick, & C. 

Laborde (eds.), International handbook of mathematics education (pp. 

205-237). Springer.  https://doi.org/10.1007/978-94-009-1465-0_8 

Shi, Y. (2000). The game PIG: Making decisions based on mathematical 

thinking. Teaching Mathematics and Its Applications: International 

Journal of the IMA, 19(1), 30-34. 

https://doi.org/10.1093/teamat/19.1.30 

Sriraman, B., & Chernoff, E. J. (2020). Probabilistic and statistical thinking. 

In S. Lerman (ed.), Encyclopedia of mathematics education, 675-681. 

https://doi.org/10.1007/978-3-030-15789-0_100003 

van Der Bles, A. M., van Der Linden, S., Freeman, A. L., Mitchell, J., Galvao, 

A. B., Zaval, L., & Spiegelhalter, D. J. (2019). Communicating 

uncertainty about facts, numbers and science. Royal Society open 

science, 6(5), 181870. https://doi.org/10.1098/rsos.181870 

Vergara-Gómez, A. (2020). Estudio socioepistemológico de los procesos de 

toma de decisiones en contextos de incertidumbre; una mirada desde 

la práctica cotidiana hacia la matemática escolar. Tesis de 

Doctorado. Pontificia Universidad Católica de Valparaíso, Chile. 

https://catalogo.pucv.cl/cgi-bin/koha/opac-

detail.pl?biblionumber=433540 

Vergara-Gómez, A., Estrella, S., & Vidal-Szabó, P. (2020). Relaciones entre 

pensamiento proporcional y pensamiento probabilístico en situaciones 

de toma de decisiones. Revista latinoamericana de investigación en 

matemática educativa, 23(1), 7-36. 

https://doi.org/10.12802/relime.20.2311 

Walliser, B. (2007). The Functions of Economic Models. In 1st edition. M. 

Touffut (ed.), Augustin Cournot: modelling economics (pp. 41-54). 

Edward Elgar Publishing Limited.  

https://doi.org/10.4337/9781847208866.00013 

Yates, D., Moore, M. D., y McCabe, G. (1999). The Practice of Statistics. 

W.H. Freeman. 

https://doi.org/10.22533/at.ed.2952206043
https://doi.org/10.1007/978-94-009-1465-0_8
https://doi.org/10.1093/teamat/19.1.30
https://doi.org/10.1007/978-3-030-15789-0_100003
https://doi.org/10.1098/rsos.181870
https://catalogo.pucv.cl/cgi-bin/koha/opac-detail.pl?biblionumber=433540
https://catalogo.pucv.cl/cgi-bin/koha/opac-detail.pl?biblionumber=433540
https://doi.org/10.12802/relime.20.2311
https://doi.org/10.4337/9781847208866.00013


 

155  Acta Sci. (Canoas), 26(1), 125-156, Jan./Fev. 2024  

 

 


