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ABSTRACT 

Background: This article aims to contribute to Calculus teaching regarding 

the selection of teaching resources that take learning difficulties into consideration. 

Objectives: We advocate choosing appropriate resources that reflect the results of 

theories and the advantages of using technology. Design: Theoretical constructs 

proposed by David Tall (1941-2024), such as cognitive root and local straightness, as 

well as documentational genesis, introduced by Gueudet and Trouche, are used to 

support our approach to the concepts of derivative and differential equation. Data 

Collection and Analysis: The study focuses on theoretical frameworks and practical 

examples of teaching resources developed. Results: Examples such as the blancmange 

function and the use of GeoGebra are discussed as tools that foster the understanding 

of complex concepts through interactive and dynamic visualizations. Conclusions: 

This study emphasizes the importance of combining theory and practice in the use of 

technologies to facilitate meaningful Calculus learning, which highlights the relevance 

of these approaches to the field of Mathematics Education. 

Keywords: Calculus Teaching; Cognitive Root; GeoGebra; Differential 

Equations; Documentational Genesis. 

 

Aprendizagem Interativa de Cálculo: integrando Raízes Cognitivas, Gênese 

Documental e GeoGebra 

 

RESUMO 

Contexto: Este artigo busca contribuir para o ensino de Cálculo no que diz 

respeito à seleção de recursos didáticos que considerem as dificuldades de 

aprendizagem. Objetivos: Defendemos a escolha de recursos apropriados que reflitam 

os resultados de teorias e as vantagens do uso da tecnologia. Design: Os construtos 
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teóricos propostos por David Tall (1941-2024), como raiz cognitiva e retidão local, bem 

como a gênese documental introduzida por Gueudet e Trouche, são utilizados para 

fundamentar nossa abordagem aos conceitos de derivada e equação diferencial. Coleta 

e Análise de Dados: O estudo caracteriza-se como um estudo teórico em que são 

apresentados exemplos práticos. Resultados: Exemplos como a função “manjar branco” 

e o uso do GeoGebra são discutidos como ferramentas que promovem a compreensão 

de conceitos complexos por meio de visualizações interativas e dinâmicas. Conclusões: 

Este estudo enfatiza a importância de combinar teoria e prática no uso de tecnologias 

para facilitar a aprendizagem significativa de Cálculo, destacando a relevância dessas 

abordagens no campo da Educação Matemática. 

Palavras-chave: Ensino de Cálculo; Raiz Cognitiva; GeoGebra; Equações 

Diferenciais; Gênese Documental. 

  

INTRODUCTION 

Calculus teaching has posed numerous challenges to teachers in their 

didactical efforts aimed at students’ meaningful learning. Various aspects have 

been highlighted, and searching for ways to overcome them presents another 

challenge that sparks the interest of researchers and teachers in their 

professional practice. 

Mathematics, especially Calculus, has not evolved through an 

accumulation of novelties. There were coming and goings until the following 

aspects were stabilized: the definition of limit and of function, the 

conceptualization of number, among others. It was necessary to overcome 

epistemological obstacles to the constitution of its essential ideas, which were 

then supported by infinitely large and infinitely small sets. 

In its early days, Mathematics was understood as the study of ultimate 

truths, of eternal reality, not immanent to nature and the universe, rather than a 

branch of logic and a tool for science and technology, as it is viewed today. 

The skeptical approach of the Greeks, the science of Eudoxus (between 

408 and 355 BCE) and Euclid’s consistent postulates revealed, however, that 

Mathematics could be useful in interpreting nature, alongside the Scholastic 

understanding that the Universe was organized and intelligible and the shift 

from a qualitative approach to motion and variation to a quantitative study. In 

their experiments, Nicholas of Cusa (1401-1464), Kepler (1571-1630) and 

Galileo (1564-1642) are heirs to the idea that Mathematics had an intuitive and 

experimental nature. However, in the 16th and 17th centuries, this image of 

architect of the universe was modified due to the need generated by practice. 
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Nevertheless, in the 19th century, the efforts to achieve a satisfactory 

foundation for Mathematical Analysis through the infinite drew conceptual 

criticism. Kant’s (1724-1804) ideas encompassed the causes for this criticism, 

which, unlike Kant himself, no longer considered Euclid’s postulates as 

categories of synthetic judgments, but just as premises. The criticism was based 

on the fact that said premises were chosen arbitrarily and, for this reason, could 

suppress evidence of the meaning of things. 

At the end of the 19th century, the arithmetization of Mathematical 

Analysis embraced the concept of the infinite, considering that even though it 

transcends intuition in analysis, it could be inserted into Mathematics without 

implying that the logical consistency of study subjects should be abandoned. 

The conception that Mathematics is the science of quantity, space and number 

lost strength. The mathematical theory of continuity, which originated from 

experience and was considered by mathematicians, was transformed by 

mathematicians themselves into definitions that transcended sensory 

imagination. There is a certain dispute between formalists and intuitionists, but 

it is possible to accept that the “exactness of mathematical laws, […] concepts 

are suggested, although not defined, by intuition thus easily accounts for the 

fact that the results of mathematical deductive reasoning are in apparent 

agreement with those of inductive experience” (Boyer, 2012, p. 3). 

Calculus concepts, such as derivatives and integrals, result from aspects 

of nature, but their definitions are based on the abstract mathematical 

conceptualization of limit. These concepts emerged when the Greeks 

experienced difficulties in dealing with ratio and proportionality based on their 

intuitions, guided by numbers they considered discrete. 

The results of investigations that revealed the cognitive impact of 

different semiotic representations of mathematical concepts, with non-trivial 

treatments and conversions, entailed new requirements for the teaching and 

learning of these concepts (Duval, 1995). 

The fact that technologies play an essential role in all actions within 

society today obviously includes school. Digital resources specifically focused 

on education have been developed in a special way, causing alterations even in 

the epistemological references of their concepts. For example, we mention the 

case of Dynamic Geometry. Since the 1970s, Mathematics Education gained 

prominence in Higher Education, and Calculus teaching and learning were 

primarily considered by researchers in the field. Mathematics Education 

established itself as a more mature field of knowledge and became a source of 

data that could contribute to teaching and learning more consistently. 
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Today, there are theories in the field that analyze the treatment of 

challenges, although they are quite resistant. New technologies foster the 

development of new strategies for teaching, and theoretical constructs suggest 

pathways for understanding difficulties and obstacles to meaningful learning. 

It is important to be aware of these historical epistemological elements 

and research results to realize that they impact Calculus teaching and, 

consequently, its learning.  

In order to promote learning, teaching strategies should, therefore, take 

into consideration the complexity of the field, the integration between theory 

and practice and the new technologies that are available.  

A recurring aspect in research studies in the field is the confirmation 

that there are advantages in teaching strategies that use digital resources and, if 

this use is based on theoretical constructs, results may be more consistent. To 

exemplify it, Macêdo & Gregor (2020, p. 8) say that “technology is an excellent 

tool if properly used, especially when mathematical software collaborates to 

the understanding of contents and to problem-solving through graphical tools”. 

According to Santos et al. (2022, p. 110): “Digital Technologies are particularly 

justified due to their ability to enable visualization and motion through software, 

as well as to the actions that put this ability into effect, presenting graphs and 

figures in motion”. Domingues et al. (2023, p. 297) add that “the role of 

visualization and experimentation with technologies is highlighted in the 

development of differential thinking among students”. 

In this article, we present digital resources that are in line with 

theoretical constructs whose specificities value the use of technological 

resources and the epistemological constitution of Calculus concepts. Here we 

refer, respectively, to documentational genesis, document and resource 

constructs from the Theory of Documentational Approach, by Gueudet and 

Trouche, and concept image, cognitive root and local straightness, proposed by 

Tall (1941-2024). 

The following sections contain a tribute to Tall, who passed away 

recently; consideration on the theoretical foundations of the research that 

guided this article; two digital resources, R1 and R2, and examples. The article 

ends with a discussion on the potential impact of these resources on students’ 

learning, providing suggestions for future research in this field. 
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DAVID TALL (1941-2024) 

In this section, we would like to pay tribute to English researcher David 

Tall, who sadly passed away in 2024. In Author (2013), there is a brief 

bibliographical account of the author based on the data available on the 

researcher’s personal website (http://www.davidtall.com/). 

David Tall can be considered one of the most influential researchers in 

the field of Mathematics Education. He left a vast legacy that is worthy of 

celebration. His academic journey started in 1960, when he entered Oxford 

University to study Mathematics. After standing out as the best student in his 

class and receiving the Junior Mathematics Prize, Tall pursued a doctorate 

under the supervision of renowned mathematician Sir Michael Atiyah (1929-

2019) and concluded his thesis in the field of Mathematics in 1967. 

However, a series of pedagogical experiences and challenges related to 

communicating mathematical concepts at conferences made Tall reflect on 

Mathematics teaching. Then, he decided to focus his research on Mathematics 

Education, which marked the beginning of a bright career as a mathematics 

educator. 

After his transition to the study of Mathematics Education (Tall, 1986), 

he contributed significantly to the field with his work on Advanced 

Mathematical Thinking and the application of digital technologies to teaching 

(Tall, 2002). Graphic Calculus software and his empirical research influenced 

trends in the 1980s by introducing innovations to Calculus teaching. He was a 

pioneer in using computer graphics to facilitate the understanding of complex 

topics and collaborated with renowned mathematicians and educators, such as 

Ian Stewart.  

Besides his theoretical contributions, Tall established a close bond with 

Brazil. He visited the country several times, participated in conferences and 

collaborated with institutions like Universidade Federal do Rio de Janeiro, 

Universidade Federal de São Carlos, Pontifícia Universidade Católica de São 

Paulo, and others institutions.  

Brazilian researchers who worked directly with the English researcher 

include Márcia Maria Fusaro Pinto, Victor Augusto Giraldo and Rosana 

Nogueira de Lima. 

David Tall left an invaluable legacy by transforming the way we 

conceive the teaching of mathematical concepts, always in search of a more 

accessible and visual approach, which has left a significant mark in the field. 
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THEORETICAL FRAMEWORK 

The theoretical framework that supports our contributions in this article 

includes the main theoretical constructs developed by Tall and by Gueudet & 

Trouche. These approaches provide a basis for the development and application 

of digital didactical resources to Calculus teaching, and they may facilitate the 

learning of complex mathematical concepts, such as differentiability and 

differential equations.  

The theoretical constructs developed by Tall, cognitive root and local 

straightness enable a progressive approach to mathematical understanding. 

Cognitive root serves as a starting point for an intuitive development of formal 

knowledge, while local straightness facilitates the understanding of how the 

slope of a function at a point resembles a tangent line. They guided the 

development of the interactive activities proposed in this article. 

The constructs developed by Gueudet and Trouche, elements of the 

Theory of Documentational Approach, refer to classroom actions related to how 

students and teachers construct resources for teaching and how they are used 

for learning. This theory emphasizes the idea that teaching resources are not 

mere tools for teaching, but a part of a dynamic process of knowledge 

construction. Through this framework, we explore the importance of creating 

and using resources like GeoGebra in order to foster an interactive and visual 

comprehension of concepts, integrating theory and practice in Calculus 

learning. 

 

The Documentational Approach to Didactics (DAD) 

The Documentational Approach to Didactics (DAD) is a theory within 

the scope of Didactics of Mathematics proposed by Gueudet and Trouche 

(2008), aiming to understand teachers’ professional development through 

studying their interactions with resources conceived for teaching purposes 

(such as textbooks) and with those which are not intended for teaching (for 

example, a journal article). The use of these resources, both in the classroom 

and outside it, encompasses selecting, modifying and creating new resources, 

which results in what is called teacher’s documentational work in the DAD. 

The distinction between the available resources and the document 

created by the teacher with a didactical intention seems to be in line with the 

distinction adopted in the field of document engineering: 
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The conceptual and technological framework that we explore 

is that of document engineering, which replaces the 

computational properties of the digital technology in question, 

and distinguishes calculable document resource, as a means, 

and calculated document, as a purpose. (Gueudet & Trouche, 

2016, p. 7) 

According to Christo (2022), the interactions between the teacher and 

the resources available for teaching are the fundamental core of DAD. Trouche, 

Gueudet and Pepin (2018) aimed to contribute so that the perspectives of 

artefact, instrument and instrumental genesis (constructs from the Instrumental 

Approach (Rabardel, 1995)) were replaced with resource, document and 

documentational genesis.  

The resources or systems of resources available to teachers are not mere 

material resources such as a computer or a textbook. They also encompass a 

mathematical and a didactical component attributed or built by the teacher for 

specific class situations. Through the mathematical component, it is possible to 

observe the notions involved, the techniques and tasks proposed, or the activity 

guidelines. The didactical component shows the organizational elements of the 

development of teaching proposals, or the sequence of actions planned for the 

development of the class (Christo, 2022). 

Gueudet and Trouche’s (2009) documentational genesis is a process of 

transforming a resource into a document. Just like the Instrumental Approach 

(IA) (Rabardel, 1995), this process has two interrelated components called 

instrumentation and instrumentalization. 

Instrumentation is the component that addresses the influence of 

harnessed resources, their possibilities, limitations, conditions and restrictions 

in teaching practice.  

Instrumentalization focuses on the appropriation and (re)creation of 

resources by the teacher, modifying them in order to use them.  

In the theoretical framework of DAD, when teachers interact with their 

system of resources, they perform a productive activity when they produce 

resources for teaching, and a constructive activity when they develop new 

knowledge.  

Documentational Genesis is a complex process that encompasses the 

three dialectics displayed in Figure 1. 
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Figure 1 

A Documentational Genesis Scheme. (Gueudet & Trouche, 2009) 

 

 

The concepts of generic organizer and cognitive roots 

In this section, we will present two theoretical constructs developed by 

David Tall to support the resources described in this article. 

The concept of generic organizer (Tall, 1986) expands Ausubel’s idea 

of “previous organizer”, creating a learning environment where it is possible to 

manipulate examples and counterexamples of specific mathematical concepts. 

This environment should be interactive and focus on specific aspects of the 

concept, as is the case with manipulatives (for instance, Cuisenaire rods and 

Dienes blocks) and educational software. Tall warns us that a poorly structured 

generic organizer may lead students to abstract an incorrect property. According 

to the English researcher, 

If the generic organizer is used in an environment that is not 

properly controlled, then the student may abstract properties 

from the examples studied that are not part of the concept being 

modelled. As the human mind is a powerful pattern-detecting 

apparatus, patterns may be found that are not intended to be 

abstracted. (Tall, 1986, p. 83). 

It may occur, for example, by using only continuous and differentiable 

functions; in this case, students might believe that all functions are like these, 

which reinforces the importance of including counterexamples, such as 
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continuous yet non-differentiable functions. When one has no access to 

counterexamples, a property observed within a limited context may be 

incorrectly generalized. Tall called it the Principle of Generic Extension, which 

occurs in the following situation: 

If an individual works in a restricted microworld in which all 

the examples considered have a certain property, then, in the 

absence of counterexamples, the mind assumes the known 

properties to be implicit in other contexts. (Tall, 1986, p. 84). 

The construction of a generic organizer requires using a cognitive root, 

which serves as an intuitive starting point for students. According to Tall (1989), 

a cognitive root is an “anchoring concept” that students understand easily while 

holding the potential for developing formal mathematical concepts. It may help 

in the transition to formal and abstract learning, and it should be carefully 

selected to avoid misunderstandings.  

For instance, in the teaching of differentiable functions, the notion of 

local straightness can be used as a cognitive root, allowing students to visualize 

how a function resembles a straight line when magnified, as shown in Figure 2. 

Figure 2 

A small portion of a curve resembles a segment of a straight line. (Tall, 2013) 

 

In the context of teaching derivatives, using local straightness enables 

the concept of limit to be implicitly considered in graphical visualization, 

whereas the derivative can be understood as the slope of the tangent line at each 

point of the graph. 
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Tall also suggests applying local straightness to the teaching of 

differentiable equations, allowing students to understand how to construct the 

graph of a function based on its known derivative. Moreover, using the slope 

field offers a tangible understanding of the behavior of solutions to 

differentiable equations. 

Thus, cognitive roots facilitate an initial comprehension of concepts 

intuitively, preparing students for a later theoretical formalization. The 

resources presented, such as the exploration of the blancmange function, which 

illustrates the non-differentiability of continuous functions, serve as examples 

of cognitive roots that enable progressive learning. 

 

DIGITAL DIDACTICAL RESOURCES FOR TEACHING 

AND LEARNING CALCULUS 

This article presents the description of two digital didactical resources 

(R1 and R2) that were developed based on the theoretical constructs proposed 

by Tall and his collaborators, aiming at the formation of rich conceptual images1 

of the concepts involved. 

R1 is a set of graphs of real functions of a real variable constructed in 

GeoGebra (Author, 2017) that allows teachers, through its available features, 

to explore the relationships of continuity and differentiability of these functions. 

Using software facilitates the desired exploration. 

R2 enables the exploration of a solution to ordinary differential 

equations (ODE). 

 

The R1 resource: the relationship between continuity and 

differentiability 

R1 aims to harness conceptual images in the learner in order to 

consolidate the relationship between differentiability and continuity and to 

allow the reversal of mistaken conceptions constructed through usual and 

recurring examples provided in the classroom. It is formed by three examples: 

 
1  According to Vinner (2002, p. 68): “The concept image is something non-verbal 

associated in our mind with the concept name. It can be a visual representation of the 

concept in case the concept has visual representations; it also can be a collection of 

impressions or experiences”. 
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the first is the main one, while the other two are complementary, but equally 

important.  

The first resource is a function called blancmange, a significant 

example for analyzing the relationship to be explored, because it is a continuous 

function at all points of its domain, yet non-differentiable at any of them. The 

idea here is to take to the extreme the fact that continuity does not imply 

differentiability. 

That is to say, it is a very illustrative example that the T1 theorem2 does 

not imply a reciprocal relationship. 

In general, the example presented to illustrate that T1 does not imply 

reciprocity is the modular function expressed by ℎ(𝑥) = |𝑥|  at 𝑥0 = 0 . 

However, this fact may be overlooked as an isolated case among the many other 

examples of functions in which the reciprocal is valid. In light of this, providing 

other examples is important, and it is especially important to promote the study 

of functions that are continuous yet non-differentiable at more than one point 

in the domain.  

The example considered by Tall is the function he named blancmange, 

in reference to a type of English dessert (Tall & Giacomo, 2000). This function 

was introduced by Japanese mathematician Teiji Takagi (1875–1960) in 1903 

(Takagi, 1990) and illustrates an extreme case of rupture in the identification 

between continuous and differentiable functions. It is characterized by its 

wrinkled look, which contrasts with the smooth aspect of functions studied in 

Calculus courses (polynomial, exponential and trigonometric functions, for 

example). Figure 3 shows its graphical representation. 

 
2 T1: If a real function f of a real variable is differentiable at a point 𝑥0 in its domain, 

then f is continuous at 𝑥0. 
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Figure 3 

Graphical representation of the “blancmange” function. (Tall & Giacomo, 

2000) 

 

The graphical representation of the “blancmange” function is 

constructed through the series (sn) of functions where the first term of the series 

is the function called “sawtooth” 𝑠1 = 𝑠1(𝑥) with:  

𝑠1: [0,1] →  ℝ   and 𝑠1(𝑥) = 𝑑(𝑥, ℤ)3.  

Figure 4 

Graph of the function s1 (Developed on GeoGebra) 

 

The algebraic representation of the “blancmange” function is: 

 
3 𝑑(𝑥, ℤ)  =  𝑖𝑛𝑓 { |𝑥 –  𝑧|, 𝑥 ∈ [0, 1] and 𝑧 ∈  ℤ }. 
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𝑏(𝑥) =  ∑ 𝑠𝑛(𝑥)

∞

𝑛=1

 

Each term in this series is algebraically represented by the expression 

𝑠𝑛(𝑥) =
1

2𝑛−1 𝑠1(2𝑛−1 ⋅ 𝑥). In Tall and Giacomo (2000) and Author (2017), it is 

demonstrated that function b is continuous and non-differentiable on (0,1). 

Series b is convergent at all points on [0,1], so the function is well defined on 

this interval. 

This example can be used to foster discussions on the relationship 

between continuity and differentiability. It illustrates that interpreting graphical 

representations of functions may not be enough to understand their properties. 

It is necessary to highlight the importance of performing an analytical study 

when studying advanced mathematics topics. 

According to Tall, it is beneficial to approach this type of example. 

Through it, the development of rich conceptual images among students 

regarding the concept of functions may be boosted, because the 

[...] first course in calculus usually focuses on the regular 

functions given by a combination of the standard functions. 

This necessarily gives the impression that functions are usually 

differentiable, setting up the met-before that later ideas in 

mathematical analysis can be monstrous. An embodied 

approach, however, can offer insights as to what it means to be 

non-differentiable. (Tall, 2013, p. 314). 

The reference to an embodied approach, as suggested by Tall, is based 

on the notion of local straightness. By harnessing this notion, it is possible to 

assume the non-differentiability of this function at a given point, that is, “the 

graphical representation of the function, in a neighborhood of this point, does 

not resemble a straight line at any level of magnification” (Author, 2017, p. 

146). 

For example, the real function 𝑔(𝑥)  =  |𝑐𝑜𝑠(𝑥)| is not differentiable 

for any value of 𝑥  such that 𝑥 =  
𝑘∙𝜋

2
 , where 𝑘 ∈  ℤ.  Figure 5 shows the 

graphical representation of g on the left. On the right, there is a magnified view 

of the graph of g in the neighborhood of 𝑥 =
 𝜋

2
 by using ‘MagnifyG’. This 

application is available on: https://www.geogebra.org/m/fgnghuqt.  

https://www.geogebra.org/m/fgnghuqt
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Figure 5 

Graph of the function 𝑔(𝑥)  =  |𝑐𝑜𝑠(𝑥)|  and a magnified view of a 

neighborhood of point (
 𝜋

2
, 0) (Developed on GeoGebra). 

 

In the case of function g, a straight line will not be obtained, 

irrespective of the level of magnification of the neighborhoods around points 

on its graphical representation. It is important to consider this because there are 

functions that may not appear differentiable at certain levels of magnification 

of neighborhoods on their graphs, but they are indeed differentiable. 

This is an adaptation based on a proposal by Tall and Giacomo (2000), 

where the function is h, with ℎ(𝑥)  =  √𝑐𝑜𝑠2(𝑥) + 0,0001. At a certain level 

of magnification in the GeoGebra Graphics, the graphical representation of this 

function resembles that of a function that is non-differentiable on (
 𝜋

2
, 0) , 

because it presents a “peak”. However, when the level of magnification of the 

neighborhood of the point increases, it resembles a straight line parallel to the 

x-axis, indicating that the derivative of the function at this point exists and is 

equal to zero (which can be verified by calculating h’ using the rules of 

differentiation). 
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Figure 6 

Graph of the function ℎ(𝑥) =  √𝑐𝑜𝑠2(𝑥) + 0,0001 with a magnified view of 

the neighborhood of point (
 𝜋

2
, 0). (Developed on GeoGebra). 

 

 

About using an example of a function that is continuous and non-

differentiable for all values in the domain, we highlight two research 

publications: Tall and Di Giacomo (2000) and Oikkonen & Hannula (2022). 

With this type of example, Tall and Di Giacomo (2000) indicate that it 

is necessary to use visual representations to generate perceptions of certain 

mathematical concepts. However, they are not sufficient, because it is essential 

to perform an analytical study of their differentiability, considering their 

algebraic representation of the limit function of the series of functions. 

We consider that using these resources may contribute to shedding light 

on the frequent complaints made by advanced mathematics course students 

about rigor. What they “[...] often lack at the advanced level is the sense of why 

the abstraction was made” (Mamona-Downs & Downs, 2002, p. 168). 

Tall & Di Giacomo (2000) emphasize that although graphical 

representations of functions are not precise, they are a pedagogical tool that 

may encourage discussion, improve the understanding of mathematical ideas 

and give meaning to the rigor that should be applied. 

Oikkonen & Hannula (2022) also explore the example of the 

blancmange function. They use a visual approach to demonstrate the properties 
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of this function, specifying the uniform continuity and indicating that the 

function is not differentiable at any point in the domain. The authors argue that 

the construction and comprehension of these functions may be enhanced by an 

approach that encompasses visual resources; that involves social-subjective and 

objective aspects of mathematical thinking. 

By using the theoretical framework of the Three Worlds of 

Mathematics (Tall, 2013) – embodied, symbolic and formal – and expanding it 

with the addition of social-subjective and objective aspects, we have a 

comprehensive six-dimension structure (Oikkonen & Hannula, 2022). This 

approach highlights the interaction among different ways of comprehending 

mathematics, suggesting that teaching and learning complex mathematical 

concepts, such as conjecturing about functions that are continuous yet non-

differentiable at any point, may benefit from a multifaceted perspective that 

adds visual and social elements to mathematical discourse. 

Furthermore, an example of continuous and non-differentiable function 

was important for the historical development of the concept of function. Roque 

(2012) stated that the development of the concept originated from a process that 

evolved from an intuitive approach, linked to concrete problems, for the most 

abstract and rigorous definition we have today, based on the set theory. Initially, 

functions were found in physical and practical contexts, yet, with the 

advancement of mathematics in the 19th century, the field saw the emergence 

of “pathological” functions that challenged intuition, such as the Dirichlet 

(1805–1859) function and the continuous yet non-differentiable Weierstrass 

(1815–1897) function. 

These two pathological examples brought contributions that led 

mathematicians from the 19th century to question and revise the definitions of 

function, continuity and differentiability, promoting autonomy in definitions 

based on abstract concepts, rather than relying on sensitive intuition or 

geometric perception. 

Weierstrass’ continuous yet non-differentiable function is the series 

defined as 

𝑊(𝑥) =  ∑ 𝑎𝑘 ⋅ cos(𝑏𝑘𝜋𝑥)

∞

𝑘 = 1

 

where 0 < 𝑎 < 1, 𝑏 is any integer and 𝑎 ⋅ 𝑏 > 1 + 
3𝜋

2
. In Figure 7, we 

present the partial sum of 100 terms of the function 𝑊 for 𝑎 = 0,5 and 𝑏 = 12. 
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Figure 7 

Graph of the partial sum of ∑ 0,5𝑛 ⋅ 𝑐𝑜𝑠(12𝑛𝜋𝑥)100
𝑛 = 1  (Developed on 

GeoGebra). 

 

A proof of the continuity and non-differentiability of the function and 

other types of continuous yet non-differentiable functions can be found in Thim 

(2003). 

In the case of the material presented in this section, an application was 

created in GeoGebra to display the terms and the partial sum of the series of 

functions that has the blancmange function as its limit. 

This application is called ManjarBrancoG (available on 

https://www.geogebra.org/m/tn2ur4fx), which is an adaptation of David Tall’s 

proposal, as shown in Figure 8. 

https://www.geogebra.org/m/tn2ur4fx
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Figure 8 

ManjarBrancoG application (Developed on GeoGebra). 

 

This application features the following aspects: in the Graphics window 

(on the left of Figure 8), there is a slider called n, ranging from 1 to 30, two 

buttons and two checkboxes to display/hide objects. The two buttons are used 

to display or hide the grid in both Graphics windows. The first box is called 

‘Continuous and non-differentiable function at a finite number of points’, 

which presents the nth term of the sequence of functions whose limit is equal 

to the blancmange function. The second box is called ‘Sequence of continuous 

and non-differentiable functions’, which displays all first n terms of the 

sequence of functions. 

The Graphics 2 window (on the right side of Figure 8) has a checkbox 

to display/hide objects called ‘Representation of the partial sum of the terms of 

the sequence of functions’, which presents the partial sum of the series of 

functions whose limit is the blancmange function. 

An aspect of ‘ManjarBrancoG’ that affects both Graphics windows is 

point A. This point can be moved only along the x-axis, and all other points to 

be plotted will be related to it. The points displayed in the Graphics window are 

the images of the abscissa of point A for each real function in the sequence of 

functions. 

In Graphics window 2, there are two points: the first one is on the x-

axis and has the same abscissa and ordinate values as point A; the second point 

is equal to the image of the abscissa of point A under the function that results 

from the partial sum of the n functions in the sequence. These points were 
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conceived so that users can analyze the ‘peaks’ of a function, which is an 

element of the sequence of functions, through the partial sum checkbox.  

We understand that this application is in line with the theoretical 

construct of local straightness because it makes use of visual representations to 

explore the behavior of continuous yet non-differentiable functions at specific 

points, or at all points within a domain. The concept of local straightness 

encompasses the idea that, for a function to be differentiable at a point, the 

graphic representation in the neighborhood of this point should resemble a 

straight line when considerable magnification is applied. When it does not 

occur, then the function is not differentiable. 

 

The R2 resource: a solution to an ordinary differential equation 

R2 aims to explore the concept of solution to an ordinary differential 

equation (ODE) by harnessing the idea that the derivative at a point represents 

the slope of the tangent line to the function at this point and may offer a linear 

approximation of the function in its neighborhood. It involves the graphic 

construction of the solution to an ODE based on the slope of the tangent line at 

certain points, thus determining an outline of a solution to the equation 4 , 

according to the initial conditions. 

According to Tall, with the notion of local straightness, it is possible to 

present the concept of solution to a differential equation as the inverse problem 

of differentiation. In his words: “[…] (No, this is not integration!) The problem 

is this — if I know the gradient of a function at any point, how can I build up 

the graph that has that gradient?” (Tall, 2000, p. 14, adapted). 

Furthermore, Tall proposes the following approach to the concept of 

solution to a differential equation, which 

[...] can be performed intuitively with little knowledge of the 

theory of differential equations. Yet it already carries in it the 

seeds of powerful ideas about possible existence theorems (that 

a typical first order differential equation will have a unique 

solution through each point), and following the changing 

direction will build up a global solution curve. By considering 

 
4 Consider the first-order ODE given by  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), a function 𝜙 = 𝜙(𝑥) will be a 

solution to the ODE if 
𝑑𝜙

𝑑𝑥
= 𝑓(𝑥, 𝜙(𝑥)). 
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selected examples, it is possible to look at the wider view of 

what happens to a whole range of solution curves and to see 

their behaviour. In this way, an intuitive interface can provide 

advance organizers for formal theory, especially to those 

individuals who naturally build on visual imagery. (Tall, 2000, 

p. 212). 

Besides, there is the attribution of the following embodied meaning to 

the form through which it is possible to outline a solution to one of these 

equations: 

If I point my finger at any point (𝑥, 𝑦) in the plane, then I can 

calculate the gradient of the solution curve at that point as           

𝑚 =  𝐹(𝑥, 𝑦)  and draw a short line segment of gradient 𝑚 

through the point (𝑥, 𝑦) (Tall, 2002, p. 16). 

R2 is an adaptation of a piece of software developed by Blokland, 

Giessen and Tall (2000 apud Tall, 2002) that simulates the concept of embodied 

meaning, as suggested by Tall and his collaborators (Available on: 

https://www.geogebra.org/m/mrz6eeqa). The application, developed in 

GeoGebra, enables the gradual construction of a solution curve of a differential 

equation by using segments that approximate the solution locally through the 

slope of the tangent line. 

In Figure 9, we present a tool called EquacaoDiferencial. It uses a 

function of two variables, representing the ODE 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) , and a point    

𝐴 = (𝑎, 𝑏) to create a line segment of length 1 with a slope equal to 𝑓(𝑎, 𝑏). 

The figure shows two examples of it being used for the equation 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, 

under different initial conditions. 

https://www.geogebra.org/m/mrz6eeqa
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Figure 9 

Using the EquacaoDiferencial tool for the equation  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, with two 

initial values: 𝑦(−1) =  0 and 𝑦(0)  =  1 (Developed on GeoGebra). 

 

This tool allows the development of activities based on Tall’s notion of 

embodied meaning, enabling users to explore differential equations through the 

graphical construction of segments that outline one of the solutions to the ODE. 

We suggest that the ODE used at the beginning of the process have, as solutions, 

functions that may be more familiar to students, such as straight lines, parabolas 

and hyperbolas. 

In the example presented in Figure 9, there is an example of a 

differential equation whose solution curve changes according to the initial 

condition. For the equation 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, the general solution is the family of 

functions {𝑦𝑐}𝑐∈ ℝ   given by 𝑦𝑐 = 𝐶 ⋅ 𝑒𝑥 − 𝑥 − 1 . For the initial condition 

(– 1, 0), the solution is the function 𝑦−1 = −𝑥 − 1, and, for the other initial 
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condition (𝑚, 𝑛), where the relationship   𝑛 = −𝑚 − 1 does not hold, the curve 

is a function formed by the sum of an exponential function and a first-degree 

polynomial function. 

Another example that can be used alongside the tool that has been 

presented is the equation 
𝑑𝑦

𝑑𝑥
= 1 − 𝑦, whose general solution is the family of 

functions {𝑧𝑐}𝑐∈ ℝ, given by 𝑧𝑐(𝑥) = 1 + 𝐶 ⋅ 𝑒𝑥. For the initial condition (0, 1), 

the solution is the constant function 𝑧0(𝑥) = 1. For the other initial condition 

(𝑚, 𝑛) , where the relationship 𝑛 = 1  does not hold, the curve is a function 

formed by the sum of an exponential function and a constant. 

Monaghan et al. (2023) highlight the importance of geometric and 

visual approaches to facilitate the understanding of differential equations, 

because traditional analytical methods are often focused on exact solutions, 

which may be challenging for students (Rasmussen, 2001). Their research 

shows that many students have difficulty in perceiving that an ODE has a 

family of solutions and in distinguishing between numerical approximations 

and exact solutions. Monaghan et al. (2023) share that students 

[...] did not see solutions to DEs as functions, and that these 

can be presented graphically, understand equilibrium solutions 

as constant functions that satisfy the DE and appreciate that a 

numerical approximation and an exact solution are not the 

same. Others have found that even students who could find 

algebraic solutions for DEs “did not fully understand the 

related concepts, concepts, and they had serious difficulties in 

relation to these concepts” (Arslan, 2010, p. 873). (Monaghan 

et al., 2023, p. 219). 

The approach proposed by Tall focuses on the graphic construction of 

solutions to the ODE, enabling students to explore these concepts through local 

straightness and visualization of the slopes of tangent lines at different points 

of the solution. By working with GeoGebra to draw graphs of solutions, 

students can see the difference between numerical and exact solutions in 

practice, addressing directly the difficulties described in this text. 

In this subsection, we have presented a resource for teaching 

differential equations. We understand that it may enable students to visualize 

the outline of a solution curve through a set of segments, each with a slope 

corresponding to the derivative at the abscissa of a point. This is in line with 

the embodied approach proposed by Tall (2002) and suggests that by drawing 

these tangent lines, students may gain an idea of what the solution curve is, 
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even though they do not know analytical methods for finding solutions to 

differential equations. 

 

CONCLUSIONS 

The digital resources presented in this article were developed in order 

to integrate Mathematics Education theoretical constructs into teaching practice, 

valuing the relationship between theory and practice. The concepts of resource, 

document and documentational genesis are theoretical constructs belonging to 

the Theory of Documentational Approach to Didactics, proposed by Gueudet 

and Trouche (2009), and the concepts of cognitive root and local straightness 

were introduced by David Tall. This combination facilitates students’ 

conceptual development, more specifically, in the case of this article, regarding 

the concepts of derivative and solution to a differential equation. 

The digital resources developed to explore the relationship between 

continuity and differentiability are directly in line with theoretical constructs 

developed by David Tall and his collaborators, especially the notion of local 

straightness. This type of resource harnesses the perception of how visualizing 

representations of mathematical concepts may help in understanding advanced 

ideas 

The visualization of a set of segments illustrates the concept of local 

straightness applied to ODEs when a solution to the equation is constructed 

point by point based on the slope of a tangent line that belongs to the solution, 

and the slopes of these segments help in the qualitative study of the global 

behavior of this solution. 

The results indicated that using software such as GeoGebra, when 

supported by Tall’s theoretical constructs, may facilitate an intuitive 

understanding of mathematical concepts. 

An important direction for future research may involve transforming 

these resources into documents developed based on teachers’ instrumental 

genesis. Another path is to use these resources among various target audiences 

and contexts. 

These research pathways are relevant because configurations of 

didactical resources may be transformed in different contexts, and schemes of 

utilization legitimize them. Configuring schemas means configuring structural 

forms of activities, a subject’s invariant organization across a range of thematic 

situations, that is, operational invariants, theorems-in-action and concepts-in-
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action. It is essential because “the operationality of a concept encompasses a 

range of actions and schemes”; […] they are what “differentiates knowing how 

to do from the ability to make this knowledge explicit” (Franchi, 2012, p. 200-

201, our translation). 

Therefore, the development of research that facilitates the constitution 

of teachers’ documents for teaching derivatives and solutions to differential 

equations is a fundamental step toward reinforcing the value of this research, 

as well as contributing to its replicability. 

We highlight the importance for future studies to deepen the 

investigation of the long-term impact of the resources presented in this article, 

especially among groups of students with different levels of familiarity with 

digital technologies. Furthermore, we suggest that new research studies should 

explore other technological tools for teaching Calculus and their possible 

contributions to the development of advanced mathematical thinking.  

Again, we emphasize the importance of integrating theory and practice 

in Calculus teaching by using new technologies to facilitate meaningful 

learning. This study reinforces the relevance of research with this focus in the 

field of Mathematics Education, especially when it comes to topics that 

traditionally pose difficulties for students. 
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